精英家教网 > 高中数学 > 题目详情

已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.则椭圆的标准方程为       

 

【答案】

【解析】

试题分析:条件中给出一个直线系,需要先求出直线所过的定点,根据定点是椭圆的焦点,及椭圆C上的点到点F的最大距离为8,写出椭圆中三个字母系数要满足的条件,解方程组得到结果,写出椭圆的方程解:由(1+4k)x-(2-3k)y-(3+12k)=0得(x-2y-3)+k(4x+3y-12)=0,由x-2y-3=0,4x+3y-12=0,解得F(3,0).设椭圆C的标准方程为(a>b>0),则,c=3,a+c=8,,解得解得 a=5,b=4,c=3,从而椭圆C的标准方程为

考点:椭圆方程的求解

点评:本题考查直线与圆锥曲线之间的关系,题目中首先求椭圆的方程,这是这类题目常用的一种形式,属于基础题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年滨州一模文)(14分)

已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知圆,直线.试证明:当点在椭圆上运动时,直线与圆恒相交,并求直线被圆所截得弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.

   (1)求椭圆的标准方程;

   (2)已知圆,直线.试证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.   (1)求椭圆的标准方程;   (2)已知圆,直线.试证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011届浙江省杭州市高三第二次教学质量考试数学理卷 题型:解答题

.(本题满分14分)
已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为3.
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 设过点的直线交椭圆于两点,若,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年河北省正定中学高三下学期第三次模拟考试数学(文) 题型:解答题

(本小题满分12分)已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为3.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知圆,直线.试证明:当点在椭圆上运动时,直线与圆恒相交,并求直线被圆所截得弦长的取值范围.
(Ⅲ)设直线与椭圆交于两点,若直线轴于点,且,当变化时,求 的值;   

查看答案和解析>>

同步练习册答案