精英家教网 > 高中数学 > 题目详情

【题目】随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表:

考试情况

男学员

女学员

第1次考科目二人数

1200

800

第1次通过科目二人数

960

600

第1次未通过科目二人数

240

200

若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.

(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;

(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元,求的分布列与数学期望.

【答案】(1);(2)见解析.

【解析】

事件表示男学员在第次考科目二通过,事件表示女学员在第次考科目二通过(其中)(1)这对夫妻是否通过科目二考试相互独立,利用独立事件乘法公式即可求得;(2)补考费用之和为元可能取值为400,600,800,1000,1200,根据题意可求相应的概率,进而可求X的数学期望.

事件表示男学员在第次考科目二通过,

事件表示女学员在第次考科目二通过(其中.

(1)事件表示这对夫妻考科目二都不需要交补考费.

.

(2)的可能取值为400,600,800,1000,1200.

.

的分布列为:

400

600

800

1000

1200

(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学生对函数的性质进行研究,得出如下的结论:

函数在上单调递减,在上单调递增;

是函数图象的一个对称中心;

函数图象关于直线对称;

存在常数,使对一切实数x均成立,

其中正确命题的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,侧面是正方形,是等腰直角三角形,点是正方形对角线的交点.

(1)证明:平面

(2)若侧面与底面垂直,求五面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|x+1|+2|xm|

1)当m2时,求fx≤9的解集;

2)若fx≤2的解集不是空集,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线与圆 )相交于 四个点,

1)求的取值范围;

2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三陵锥中,为等腰直角三角形,为正三角形,的中点.

1)证明:平面平面

2)若二面角的平面角为锐角,且棱锥的体积为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的极小值;

(Ⅱ)若函数有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为梯形, 底面 . 

1)求证:平面 平面

2)设上的一点,满足,若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数只有一个极值点,则k的取值范围为

A.B.C.D.

查看答案和解析>>

同步练习册答案