分析 (Ⅰ)抛物线的标准方程是y2=6x,焦点在x轴上,开口向右,2p=6,即可求出抛物线的焦点坐标和准线方程,
(Ⅱ)先根据题意给出直线l的方程,代入抛物线,求出两交点的横坐标的和,然后利用焦半径公式求解即可.
解答 解:(Ⅰ)抛物线的标准方程是y2=6x,焦点在x轴上,开口向右,2p=6,∴$\frac{p}{2}$=$\frac{3}{2}$,
∴抛物线的焦点坐标($\frac{3}{2}$,0),准线方程x=-$\frac{3}{2}$;
(Ⅱ)∵直线l过已知抛物线的焦点且倾斜角为45°,
∴直线l的方程为y=x-$\frac{3}{2}$,
代入抛物线y2=6x化简得x2-9x+$\frac{9}{4}$=0,
设A(x1,y1),B(x2,y2),则x1+x2=9,
所以|AB|=x1+x2+p=9+3=12.
故所求的弦长为12.
点评 本题考查了直线与抛物线的位置关系中的弦长问题,因为是过焦点的弦长问题,所以利用了焦半径公式.属于基础题.
科目:高中数学 来源: 题型:选择题
A. | 4π+4 | B. | $4π+\frac{4}{3}$ | C. | 2π+4 | D. | $2π+\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{10}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{10}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | 1 | C. | $\sqrt{3}$ | D. | -1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com