精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线 ,定点(常数)的直线与曲线相交于两点.

(1)若点的坐标为,求证:

(2)若,以为直径的圆的位置是否恒过一定点?若存在,求出这个定点,若不存在,请说明理由.

【答案】(1)证明见解析(2))以为直径的圆恒过定点

【解析】试题分析:(1)要证明∠AED=∠BED,根据直线的倾斜角与斜率的关系,只要证KAE=-KBE即可,讨论直线AB的斜率是否存在,设出直线方程,联立抛物线的方程,运用韦达定理和直线的斜率公式,即可得证;(2)设动直线l方程为x=ty+b,表示出B坐标,联立l与抛物线解析式,消去x得到关于y的方程,根据根的判别式等于0得出t与b的关系式,进而设出A与O的坐标,表示出向量AO与向量BO根据圆周角定理得到两向量垂直,即数量积为0,列出关系式,确定出当m=1,n=0时,上式对任意x∈R恒成立,即可得出使得以AB为直径的圆恒过点O,以及此时O的坐标.

试题解析:(1)(a)当直线垂直于轴时,根据抛物线的对称性有,

当直线轴不垂直时,依题意,

可设直线的方程为

,则两点的坐标

满足方程组

消去并整理,得

设直线的斜率分别为 ,则

.

综合(a)(b)可知.

(2)以为直径的圆恒过定点.提示:证明

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1=1,an+1= Sn(n=1,2,3,…).则数列{an}的通项公式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的中心在原点,长轴左、右端点轴上,椭圆的短轴为,且的离心率都为,直线, 交于两点,与交于两点,这四点纵坐标从大到小依次为.

(1)设,求的比值;

(2)若存在直线,使得,求两椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左右焦点分别为 ,离心率为,点在椭圆上, ,过与坐标轴不垂直的直线与椭圆交于 两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)若 的中点为,在线段上是否存在点,使得?若存在,求实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和记为 ,点在直线上,其中.

1)若数列是等比数列,求实数的值;

2)设各项均不为0的数列中,所有满足的整数的个数称为这个数列的“积异号数”,令),在(1)的条件下,求数列的“积异号数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(﹣∞,0)上是增函数;又定义行列式 ; 函数 (其中 ).
(1)若函数g(θ)的最大值为4,求m的值.
(2)若记集合M={m|恒有g(θ)>0},N={m|恒有f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于直线对称.

(1)不等式对任意恒成立,求实数的最大值;

(2)设内的实根为 ,若在区间上存在,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为,高为,圆锥的母线长为.

(1)求这种“笼具”的体积;

(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=
(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},求k的值;
(2)若对任意x>0,f(x)≤t恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案