【题目】已知抛物线: ,定点(常数)的直线与曲线相交于、两点.
(1)若点的坐标为,求证:
(2)若,以为直径的圆的位置是否恒过一定点?若存在,求出这个定点,若不存在,请说明理由.
【答案】(1)证明见解析(2))以为直径的圆恒过定点
【解析】试题分析:(1)要证明∠AED=∠BED,根据直线的倾斜角与斜率的关系,只要证KAE=-KBE即可,讨论直线AB的斜率是否存在,设出直线方程,联立抛物线的方程,运用韦达定理和直线的斜率公式,即可得证;(2)设动直线l方程为x=ty+b,表示出B坐标,联立l与抛物线解析式,消去x得到关于y的方程,根据根的判别式等于0得出t与b的关系式,进而设出A与O的坐标,表示出向量AO与向量BO根据圆周角定理得到两向量垂直,即数量积为0,列出关系式,确定出当m=1,n=0时,上式对任意x∈R恒成立,即可得出使得以AB为直径的圆恒过点O,以及此时O的坐标.
试题解析:(1)(a)当直线垂直于轴时,根据抛物线的对称性有, ;
当直线与轴不垂直时,依题意,
可设直线的方程为(, )
, ,则、两点的坐标
满足方程组
消去并整理,得
,
设直线和的斜率分别为, ,则
,
.
综合(a)(b)可知.
(2)以为直径的圆恒过定点.提示:证明
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的中心在原点,长轴左、右端点、在轴上,椭圆的短轴为,且、的离心率都为,直线, 与交于两点,与交于两点,这四点纵坐标从大到小依次为、、、.
(1)设,求与的比值;
(2)若存在直线,使得,求两椭圆离心率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ( )的左右焦点分别为, ,离心率为,点在椭圆上, , ,过与坐标轴不垂直的直线与椭圆交于, 两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若, 的中点为,在线段上是否存在点,使得?若存在,求实数的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列的前项和记为, ,点在直线上,其中.
(1)若数列是等比数列,求实数的值;
(2)设各项均不为0的数列中,所有满足的整数的个数称为这个数列的“积异号数”,令(),在(1)的条件下,求数列的“积异号数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(﹣∞,0)上是增函数;又定义行列式 ; 函数 (其中 ).
(1)若函数g(θ)的最大值为4,求m的值.
(2)若记集合M={m|恒有g(θ)>0},N={m|恒有f[g(θ)]<0},求M∩N.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为,高为,圆锥的母线长为.
(1)求这种“笼具”的体积;
(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)= .
(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},求k的值;
(2)若对任意x>0,f(x)≤t恒成立,求实数t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com