精英家教网 > 高中数学 > 题目详情

【题目】是等差数列,,且成等比数列.

1)求的通项公式;

2)求的前项和的最小值;

3)若是等差数列,的公差不相等,且,问:中除第5项外,还有序号相同且数值相等的项吗?(直接写出结论即可)

【答案】1;(2时,取得最小值;(3中除第5项外,没有序号相同且数值相等的项.

【解析】

1)根据等差数列的基本量和等比中项的性质,得到关于公差的方程,从而得到通项公式;

2)根据(1)所得的通项,从而得到前项的和

3)设的通项,根据列出方程组,得到方程组无解,得到答案.

1)设等差数列的公差为.

因为成等比数列,

所以

即有

解得

.

2)由(1)中等差数列的通项

所以的前项和

由于为自然数,可得时,取得最小值.

3)设中除第5项外,还有序号相同且数值相等的项,

设为第项,相同,则

根据的公差不相等,可知

,得,即

相同,得到

整理得

因为,所以方程无解.

中除第5项外,没有序号相同且数值相等的项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,函数在第一象限内的图像如图所示,试做如下操作:把x轴上的区间等分成n个小区间,在每一个小区间上作一个小矩形,使矩形的右端点落在函数的图像上.若用表示第k个矩形的面积,表示这n个叫矩形的面积总和.

1)求的表达式;

2)利用数学归纳法证明,并求出的表达式

3)求的值,并说明的几何意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数.

(1)求函数的单调区间;

(2)若存在,使得成立,求实数的取值范围;

(3)定义:如果实数满足, 那么称更接近.对于(2)中的,问:哪个更接近?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,对于点,若函数满足:,都有,就称这个函数是点的“限定函数”.以下函数:①,②,③,④,其中是原点的“限定函数”的序号是______.已知点在函数的图象上,若函数是点的“限定函数”,则的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,长轴长为

)求椭圆的标准方程及离心率;

)过点的直线与椭圆交于两点,若点满足,求证:由点 构成的曲线关于直线对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场营销人员进行某商品的市场营销调查时发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:

反馈点数t

1

2

3

4

5

销量(百件)/天

0.5

0.6

1

1.4

1.7

(Ⅰ)经分析发现,可用线性回归模型拟合当地该商品销量(千件)与返还点数之间的相关关系.试预测若返回6个点时该商品每天的销量;

(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:

返还点数预期值区间

(百分比)

[1,3)

[3,5)

[5,7)

[7,9)

[9,11)

[11,13)

频数

20

60

60

30

20

10

将对返点点数的心理预期值在的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程的曲线是圆C

(1)若直线l与圆C相交于MN两点,且O为坐标原点),求实数m的值;

2)当时,设T为直线n上的动点,过T作圆C的两条切线TGTH,切点分别为GH,求四边形TGCH而积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F是抛物线Cy22pxp0)的焦点,若点Px04)在抛物线C上,且.

1)求抛物线C的方程;

2)动直线lxmy+1mR)与抛物线C相交于AB两点,问:在x轴上是否存在定点Dt0)(其中t≠0),使得kAD+kBD0,(kADkBD分别为直线ADBD的斜率)若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,侧棱底面为棱上一点,

1)当为棱中点时,求直线与平面所成角的正弦值;

2)是否存在点,使二面角的余弦值为?若存在,求的值.若不存在,请说明理由.

查看答案和解析>>

同步练习册答案