精英家教网 > 高中数学 > 题目详情
4.若函数$f(x)=\left\{\begin{array}{l}sinx+\frac{3}{2},x≥0\\{x^2}+a,x<0\end{array}\right.$(其中a∈R)的值域为$[\frac{1}{2},+∞)$,则a的取值范围是(  )
A.$[\frac{3}{2},+∞)$B.$[\frac{1}{2},\frac{3}{2}]$C.$[\frac{1}{2},\frac{5}{2}]$D.$[\frac{1}{2},+∞)$

分析 分别求x≥0与x<0时f(x)的值域,再由集合的并运算解得.

解答 解:当x≥0时,f(x)=sinx+$\frac{3}{2}$,
故$\frac{1}{2}$≤f(x)$≤\frac{5}{2}$,
当x<0时,f(x)=x2+a,
故f(x)>a;
∵函数f(x)的值域为$[\frac{1}{2},+∞)$,
∴$\frac{1}{2}$≤a≤$\frac{5}{2}$;
故选:C.

点评 本题考查了分段函数的值域的求法应用及分类讨论的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动.
(Ⅰ)求线段AB的中点轨迹方程M;
(Ⅱ)求轨迹M上的点到点P(5,4)的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x5+x3+x的图象(  )
A.关于y轴对称B.关于直线y=x对称
C.关于坐标原点对称D.关于直线y=-x对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在正四棱柱ABCD-A1B1C1D1中,∠B1AB=60°
(1)求A1C与平面ABCD所成的角的大小;
(2)求异面直线B1C与A1C1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,m),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则2$\overrightarrow{a}$+3$\overrightarrow{b}$=(-4,7).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若实数a,b,c成等差数列,点P(-3,2)在动直线ax+by+c=0上的射影为H,点Q(3,3),则线段QH的最大值为$5+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$β∈({\frac{3π}{2},2π})$,满足tan(α+β)-2tanβ=0,则tanα的最小值是$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(2x+1,3),$\overrightarrow{b}$=(2,2-x),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数x的值等于-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$,则以点$A(2,\frac{3}{2})$为中点的弦所在直线的方程为(  )
A.8x-6y-7=0B.3x+4y=0C.3x+4y-12=0D.4x-3y=0

查看答案和解析>>

同步练习册答案