精英家教网 > 高中数学 > 题目详情
2.某超市要将甲、乙两种大小不同的袋装大米分装成A,B两种规格的小袋,每袋大米可同时分得A,B两种规格的小袋大米的袋数如下表所示:
规格类型
袋装大米类型
AB
21
13
已知库房中现有甲、乙两种袋装大米的数量分别为5袋和10袋,市场急需A,B两种规格的成品数分别为15袋和27袋.
(Ⅰ)问分甲、乙两种袋装大米各多少袋可得到所需A,B两种规格的成品数,且使所用的甲、乙两种袋装大米的袋数最少?(要求画出可行域)
(Ⅱ)若在可行域的整点中任意取出一解,求其恰好为最优解的概率.

分析 (Ⅰ)设需分甲、乙两种袋装大米的袋数分别为x、y,所用的袋装大米的总袋数为 z,建立目标函数和约束条件,利用线性规划的知识进行求解.
(Ⅱ)根据古典概型的概率公式进行计算即可.

解答 解:(Ⅰ)设需分甲、乙两种袋装大米的袋数分别为x、y,所用的袋装大米的总袋数为 z
则 $\left\{\begin{array}{l}{2x+y≥15}\\{x+3y≥27}\\{0≤x≤5}\\{0≤y≤10}\end{array}\right.$;(3分)
z=x+y,(x,y为整数).(4分)
作出可行域D如图.(6分)
从图中可知,可行域D的所有整数点为:(3,9),(3,10),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),
共8点.(8分)
因为目标函数为 z=x+y,(x,y为整数),所以在一组平行直线x+y=tt为参数)中,
经过可行域内的整点且与原点距离最近的直线是x+y=12,其经过的整点是(3,9)和(4,8),它们都是最优解.(9分)
所以,需分甲、乙两种袋装大米的袋数分别为 袋、袋或 袋、袋可使所用的袋装大米的袋数最少.(10分)
(Ⅱ)由(Ⅰ)可知可行域内的整点个数为8,而最优解有两个,所以所求的概率为P=$\frac{2}{8}$=$\frac{1}{4}$.(12分)

点评 本题主要考查线性规划的应用问题以及古典概型的计算,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若tanθsinθ<0,则θ的终边在(  )
A.第一或第二象限B.第一或第三象限C.第二或第三象限D.第二或第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设等比数列{an}前n项和为Sn,若S3+S6=2S9,证明a2,a8,a5成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$sin2x+sinxcosx.
(1)求函数f(x)的单调递增区间;
(2)在给出的直角坐标系中,画出函数f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点A(-7,1),B(-5,5),直线l:y=2x-5,P为l上的一点,使|PA|+|PB|最小时P的坐标为(  )
A.(2,-1)B.(3,-2)C.(1,-3)D.(4,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知四边形ABCD是⊙O的内接梯形,AB∥CD,AB=8cm,CD=6cm,⊙O的半径等于5cm,则梯形ABCD的面积为7cm2或49cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正方形ABCD的边长为6,E为BC的 中点,则$\overrightarrow{AE}•\overrightarrow{BD}$=-18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:“?x>0,3x>1”的否定是“?x≤0,3x≤1”,命题q:“a<-2”是“函数f(x)=ax+3在区间[-1,2]上存在零点”的充分不必要条件,则下列命题为真命题的是(  )
A.p∧qB.p∨¬qC.¬p∧qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:
(1)$\root{4}{{{{({\sqrt{5}-4})}^4}}}+\root{3}{{{{({\sqrt{5}-4})}^3}}}+{2^{-2}}×{({2\frac{1}{4}})^{-\frac{1}{2}}}-{({0.01})^{0.5}}$
(2)$\frac{{\root{3}{{{a^{\frac{9}{2}}}\sqrt{{a^{-3}}}}}}}{{\sqrt{\root{3}{{{a^{-7}}}}•\root{3}{{{a^{13}}}}}}}$.

查看答案和解析>>

同步练习册答案