【题目】已知函数.
(1)求的单调性;
(2)若对定义域内任意的,都恒成立,求a的取值范围;
(3)记,若在区间内有2个零点,求a的取值范围.
【答案】(1)见解析;(2);(3)
【解析】
(1)先求导得,按,,分类讨论即可;
(2)由(1)得函数的最小值,只要最小值不小于即可解出a的范围;
(3)化简得,求导得,按,,分类讨论得的单调性,根据题意即可求出a的范围.
(1)的定义域为,
当时,恒成立,∴在上单调递增;
当时,在上单调递减,上单调递增;
当时,在上单调递减,上单调递增.
(2)由(1)知:当时,在上单调递增,所以恒成立;
当时,在上单调递减,上单调递增,
所以,解得;
当时,在上单调递减,上单调递增,
所以,解得
综上:
(3)记,化简得,,所以;
当时,,所以在上递增,不符合题意,舍去;
当时,在上单调递减,上单调递增,要使在区间内有2个零点,
,解得;
当时,在上单调递减,上单调递增,要使在区间内有2个零点,
,解得;
综上:.
科目:高中数学 来源: 题型:
【题目】已知函数,的在数集上都有定义,对于任意的,当时,或成立,则称是数集上的限制函数.
(1)求在上的限制函数的解析式;
(2)证明:如果在区间上恒为正值,则在上是增函数;[注:如果在区间上恒为负值,则在区间上是减函数,此结论无需证明,可以直接应用]
(3)利用(2)的结论,求函数在上的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,直线与轴的交点为P,与C的交点为Q,且过F的直线与C相交于A、B两点.
(1)求C的方程;
(2)设点且的面积为求直线的方程;
(3)若线段AB的垂直平分线与C相交于M、N两点,且A、M、B、N四点在同一圆上,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,各项均不相等的数列满足.令.给出下列三个命题:
(1)存在不少于3项的数列,使得;
(2)若数列的通项公式为,则对恒成立;
(3)若数列是等差数列,则对恒成立.
其中真命题的序号是( )
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】只红铃虫的产卵数y和温度x有关,现收集了7组观测数据作了初步处理,得到下面的散点图及一些统计量的值.
27 | 81 | 3.6 | 152 | 2936 | 38 |
其中
(1)根据散点图判断,与(e为自然对数的底数)哪一个更适宜作为红铃虫的产卵数y和温度x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)根据(2)的结果,当温度为37度时红铃虫的产卵数y的预报值是多少?
参考公式:对于一组数据,,…,,其线性回归方程的系数的最小二乘法估计值为,
参考数据:,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,过点的直线与抛物线交于 两点,又过两点分别作抛物线的切线,两条切线交于点。
(1)证明:直线的斜率之积为定值;
(2)求面积的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.
(1)求椭圆E的标准方程;
(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥PABCD中,PA⊥底面ABCD,AD∥BC,AB=AC=AD=3,PA=BC=4.
(1)求异面直线PB与CD所成角的余弦值;
(2)求平面PAD与平面PBC所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若一个三位数的各位数字中,有且仅有两个数字一样,我们就把这样的三位数定义为“单重数”.例如:232,114等,则不超过200的“单重数”中,从小到大排列第25个“单重数”是( )
A.166B.171C.181D.188
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com