精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

已知椭圆C:的离心率为,A,B分别为椭圆的长轴和短轴的端点,M为AB的中点,O为坐标原点,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)过的直线与椭圆交于P、Q两点,求POQ的面积的最大时直线的方程。

 

【答案】

(1);(2)当直线的方程为时,面积最大.

【解析】离心率为,列式,M为AB的中点,O为坐标原点,且.三式求解;(Ⅱ)过的直线与椭圆交于P、Q两点,求POQ的面积的最大,考查的是弦长公式,点到直线的距离,列出关于POQ的面积公式,均值定理求解。

解:(Ⅰ)设椭圆的半焦距为,则,解得,所以椭圆的方程为.                                             ----------4分                                                                 

(Ⅱ)方法一:设交点

当直线的斜率不存在时,直线的方程为

则易得.                                                  --------------6分

当直线的斜率存在时,设其方程为),联立椭圆方程,得,两个根为 

恒成立,                ---------7分

又原点到直线的距离=,                            --------------8分

所以

                                           --------------11分

所以,当直线的方程为时,面积最大.              --------------12分

方法二:设交点

当直线的斜率不存在时,直线的方程为

则易得.                                                    ----------6分

当直线的斜率存在时,设其方程为),联立椭圆方程,得

,两个根为

恒成立,,                  -----------7分

                      ---------------8分

        =

                                             ---------11分

所以,当直线的方程为时,面积最大.                 -----------12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案