精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:函数f(x)=x2-2mx+4在[2,+∞)上单调递增,命题q:关于x的不等式mx2+4(m-2)x+4>0的解集为R.若pq为真命题,pq为假命题,求m的取值范围.

【答案】

【解析】

根据二次函数的单调性,以及一元二次不等式的解的情况和判别式的关系即可求出命题p,q为真命题时m的取值范围.根据pq为真命题,pq为假命题得到p真q假或p假q真,求出这两种情况下m的范围并求并集即可.

若命题p为真,因为函数f(x)的图象的对称轴为x=m,则m≤2;若命题q为真,当m=0时,原不等式为-8x+4>0,显然不成立.

当m≠0时,则有解得1<m<4.

由题意知,命题p,q一真一假,

解得m≤1或2<m<4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设定义在区间[﹣m,m]上的函数f(x)=log2 是奇函数,且f(﹣ )≠f( ),则nm的范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,垂直于正方形所在的平面,在这个四棱锥的所有表面及面、面中,一定互相垂直的平面有_________对.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an= ,若从{an}中提取一个公比为q的等比数列{ },其中k1=1,且k1<k2<…<kn , kn∈N* , 则满足条件的最小q的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=a(x﹣lnx)+ ,a∈R.
(1)讨论f(x)的单调性;
(2)当a= 时,证明:f(x)>f′(x)+ 对于任意的x∈[1,2]成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin(x+ )的图象上各点的横坐标压缩为原来的 倍(纵坐标不变),所得函数在下面哪个区间单调递增(
A.(﹣
B.(﹣
C.(﹣
D.(﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某中学为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识的竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐、规定:每场知识竞赛前三名的得分都分别为,且);选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为26分,乙和丙最后得分都为11分,且乙在其中一场比赛中获得第一名,则下列推理正确的是( )

A. 每场比赛第一名得分为4 B. 甲可能有一场比赛获得第二名

C. 乙有四场比赛获得第三名 D. 丙可能有一场比赛获得第一名

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是⊙O的切线,ADE是⊙O的割线,AC=AB,连接CD,CE,分别与⊙O交于点F,点G.

(1)求证:△ADC~△ACE;
(2)求证:FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列的前三项和为6,且成等比数列

1)求数列的通项公式;

2)设,数列的前项和为,求使的最大值

查看答案和解析>>

同步练习册答案