精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,其中 .

(1)若的一个极值点为,求的单调区间与极小值;

(2)当时, ,且上有极值,求的取值范围.

【答案】(1)见解析(2)

【解析】试题分析: (1)求导,由题意,可得,下来按照求函数的单调区间与极值的一般步骤求解即可;

(2)当时, ,求导,酒红色的单调性可得,进而得到.

,分类讨论,可得时, 上无极值.

,通过讨论的单调性,可得 ,或 ,可得的取值范围.

试题解析:(1)

.

;令.

的单调递增区间为,单调递减区间为 .

的极小值为.

(2)当时,

,得 上递减;

,得 上递增.

.

(i)若,则 上递增, 上无极值.

(ii)若,则 上递减, 上无极值.

(iii)若 上递减,在上递增,

,或

.

综上, 的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,左、右顶点分别为为直径的圆O过椭圆E的上顶点D,直线DB与圆O相交得到的弦长为.设点,连接PA交椭圆于点C,坐标原点为O.

(I)求椭圆E的方程;

(II)若三角形ABC的面积不大于四边形OBPC的面积,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面积为 ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出定义:若m﹣ <x≤m+ (其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m,设函数f(x)=x﹣{x},二次函数g(x)=ax2+bx,若函数y=f(x)与y=g(x)的图象有且只有一个公共点,则a,b的取值不可能是(
A.a=﹣4,b=1
B.a=﹣2,b=﹣1
C.a=4,b=﹣1
D.a=5,b=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是拋物线的焦点, 若点,

1)求的值;

2)若直线经过点且与交于(异于)两点, 证明: 直线与直线的斜率之积为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.

(1)求证:PO⊥平面ABCD;
(2)求异面直线PB与CD所成角的余弦值;
(3)线段AD上是否存在点Q,使得它到平面PCD的距离为 ?若存在,求出 的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且 bcosA=asinB.
(1)求角A的大小;
(2)若a=6,△ABC的面积是9 ,求三角形边b,c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}满足a2﹣a1>a3﹣a2>a4﹣a3>…>an+1﹣an>…,则称数列{an}为“差递减”数列,若数列{an}是“差递减”数列,且其通项an与其前n项和Sn(n∈N*)满足2Sn=3an+2λ﹣1(n∈N*),则实数λ的取值范围是

查看答案和解析>>

同步练习册答案