精英家教网 > 高中数学 > 题目详情
已知tanα,tanβ是方程x2-4px-3=0( p为常数)的两个根.
(1)求tan(α+β);
(2)求2cos2αcos2β+2sin2(α-β).(可利用的结论:sin2θ=
2tanθ
1+tan2θ
,cos2θ=
1-tan2θ
1+tan2θ
分析:(1)根据韦达定理可知tanα+tanβ和tanαtanβ的表达式,进而利用正切函数的两角和公式求得tan(α+β)的值.
(2)利用余弦的二倍角公式对原式进行整理,进而利用万能公式和tan(α+β)的值求得答案.
解答:解:(1)∵tanα,tanβ是方程x2-4px-3=0
∴tanα+tanβ=4p,tanαtanβ=-3
∴tan(α+β)=
tanα+tanβ
1-tanαtanβ
=p

(2)2cos2αcos2β+2sin2(α-β)
=2cos2αcos2β+1-cos2(α-β)
=2cos2αcos2β-cos2αcosβ-sin2αsinβ
=cos2αcos2β-sin2αsinβ
=cos2(α+β)=
1-tan2(α+β)
1+tan2(α+β)
=
2
1+p2
点评:本题主要考查了三角函数的化简求值,两角和公式的化简求值.要求考生对三角函数基本公式的熟练记忆.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα,tanβ是方程x2+3
3
x+4=0的两根,α,β∈(-
π
2
π
2
)则α+β=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题(1)?α∈R,使sinαcosα=1成立;(2)?α∈R,使tan(α+β)=tanα+tanβ成立;(3)?α∈R,都有tan(α+β)=
tanα+tanβ
1-tanαtanβ
成立.其中正确命题的个数是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα,tanβ是一元二次方程2mx2+(4m-2)x+2m-3=0的两个不等实根,求函数f(m)=5m2+3mtan(α+β)+4的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα、tanβ是方程x2-4x-2=0的两个实根,求:cos2(α+β)+2sin(α+β)cos(α+β)-3sin2(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα,tanβ是方程x2+3
3
x+4=0
的两根,且α,β∈(-
π
2
π
2
)
,则α+β=(  )
A、
π
3
-
3
B、-
π
3
3
C、
π
3
D、-
3

查看答案和解析>>

同步练习册答案