精英家教网 > 高中数学 > 题目详情
5.设△ABC的三个内角A,B,C所对的边分别为a,b,c且acosC+$\frac{1}{2}$c=b.
(1)求A的大小;
(2)若a=$\frac{\sqrt{3}}{2}$,求b+c的取值范围.

分析 (1)根据正弦定理将原式转化成sinAcosC+$\frac{1}{2}$sinC=sinB,利用三角形的内角和为π及两角和的正弦求得cosA的值,根据A的取值范围,即可求得A的大小;
(2)由正弦定理及(1)可知:b=sinB,c=sinC,将b+c转化成$\sqrt{3}$sin(B+$\frac{π}{6}$),根据正弦函数图象及性质及B的取值范围,即可求得b+c的取值范围.

解答 解:(1)∵cosC+$\frac{1}{2}$c=b.
根据正弦定理$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,
∴sinAcosC+$\frac{1}{2}$sinC=sinB,
在三角形中:A+B+C=π,
sinB=sin(A+C)=sinAcosC+cosAsinC,
∴sinAcosC+$\frac{1}{2}$sinC=sinAcosC+cosAsinC,
$\frac{1}{2}$sinC=cosAsinC,
∵sinC≠0,
∴cosA=$\frac{1}{2}$,
∵0<A<π,
A=$\frac{π}{3}$;
(2)由正弦定理可知:$\frac{b}{sinB}=\frac{c}{sinC}=\frac{a}{sinA}$=$\frac{\frac{\sqrt{3}}{2}}{sin\frac{π}{3}}$=1,
∴b=sinB,c=sinC,
∴b+c=sinB+sinC=sinB+sin($\frac{2π}{3}$-B)=$\sqrt{3}$sin(B+$\frac{π}{6}$),
∵0<B<$\frac{2π}{3}$,
∴$\frac{π}{6}$<B+$\frac{π}{6}$<$\frac{5π}{6}$,
$\frac{1}{2}$<sin(B+$\frac{π}{6}$)≤1
∴$\frac{\sqrt{3}}{2}$<b+c≤$\sqrt{3}$,
∴b+c的取值范围.($\frac{\sqrt{3}}{2}$,$\sqrt{3}$].

点评 本题考查正弦定理及三角恒等变形相结合,考查正弦函数的性质,考查综合分析问题及解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.某空间几何体的正视图、俯视图如图所示,则该几何体的表面积为(  )
A.$\frac{27\sqrt{3}}{2}$B.$\frac{27\sqrt{35}}{2}$C.$\frac{27}{2}$($\sqrt{3}$+$\sqrt{35}$)D.$\frac{27}{2}$($\sqrt{35}$-$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若(1-i)2=|1+i|2z(i为虚数单位),则复数z的实部与虚部的和为(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设各项都是正数的等差数列{an}的公差为d,前n项和为Sn,若a2,S3,a2+S5成等比数列,则$\frac{d}{{a}_{1}}$=(  )
A.0B.$\frac{3}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,要围建一个面积为400m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙时需要维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为3m的进出口,已知旧墙的维修费用为56元/m,新墙的造价为200元/m,设利用旧墙的长度为x(单位:m),修建此矩形场地的总费用为y(单位:元).
(1)求y关于x的函数表达式;
(2)试确定x的值,使修建此矩形场地的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.通过随机询问多名性别不同的大学生是否爱好某项运动,建立列联表后,由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得:K2=7.8,附表如下:
P(K2≥K)0.0500.0100.001
K3.8416.63510.828
参照附表:得到的正确结论是(  )
A.有99%以上的把握认为“爱好该项运动与性别有关”
B.有99%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x,y,z均大于1,a≠0,logza=24,logya=40,log(x•y•z)a=12,求logxa.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.i是虚数单位,复数$\frac{3+i}{1-i}$的虚部为(  )
A.1+2iB.2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图(1),在等腰梯形ABCD中,AB∥CD,E,F分别为AB和CD的中点,且AB=EF=2,CD=6,M为BC中点,现将梯形BEFC沿EF所在直线折起,使平面EFCB⊥平面EFDA,如图(2)所示,N是线段CD上一动点,且CN=λND.
(Ⅰ)当$λ=\frac{1}{2}$时,求证:MN∥平面ADFE;
(Ⅱ)当λ=1时,求二面角M-NA-F的余弦值.

查看答案和解析>>

同步练习册答案