精英家教网 > 高中数学 > 题目详情

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

1)设,判断上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;

2)若函数上是以为上界的有界函数,求实数的取值范围.

【答案】1)是,理由见解析,2

【解析】

1)根据的单调性求得在区间上的取值范围,由此得出,进而判断出在在上是有界函数,并由此求得所有上届的集合.

2)根据的上界得到,令进行换元、分离常数,将问题转化为,然后利用导数求得在区间上,函数的最大值以及函数的最小值,由此求得实数的取值范围.

1,则上是增函数,故,即

,所以是有界函数.

所以,上界满足,所有上界的集合是

2)由题意,恒成立,

,则,原不等式变为

, 故

,当时,,即函数在区间上是增函数,故.

,当时,,即函数在区间上是减函数,故

综上,实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列的前n组成集合,从集合中任取个数,其所有可能的k个数的乘积的和为(若只取一个数,规定乘积为此数本身),例如:对于数列,当时,时,

1)若集合,求当时,的值;

2)若集合,证明:时集合时集合(为了以示区别,用表示)有关系式,其中

3)对于(2)中集合.定义,求(用n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点

(1)求曲线的直角坐标方程;

(2)若点在曲线上的两个点且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数据是郑州市普通职工个人的年收入,若这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是( )

A.年收入平均数大大增大,中位数一定变大,方差可能不变

B.年收入平均数大大增大,中位数可能不变,方差变大

C.年收入平均数大大增大,中位数可能不变,方差也不变

D.年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10日,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:

甲地:总体平均数为3,中位数为4

乙地:总体平均数为1,总体方差大于0

丙地:总体平均数为2,总体方差为3

丁地:中位数为2,众数为3

则甲、乙、两、丁四地中,一定没有发生大规模群体感染的是(

A.甲地B.乙地C.丙地D.丁地

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

(2)若函数的导函数上有三个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左、右焦点分别是,点,若的内切圆的半径与外接圆的半径的比是.

1)求椭圆C的方程;

2)点M是椭圆C的左顶点,PQ是椭圆上异于左、右顶点的两点,设直线MPMQ的斜率分别为,若,试问直线PQ是否过定点?若过定点,求该定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校决定为本校上学所需时间不少于30分钟的学生提供校车接送服务.为了解学生上学所需时间,从全校600名学生中抽取50人统计上学所需时间(单位:分钟),将600人随机编号为001,002,…,600,抽取的50名学生上学所需时间均不超过60分钟,将上学所需时间按如下方式分成六组,第一组上学所需时间在[0,10),第二组上学所需时间在[10,20)…,第六组上学所需时间在[50,60],得到各组人数的频率分布直方图,如下图

(1)若抽取的50个样本是用系统抽样的方法得到,且第一个抽取的号码为006,则第五个抽取的号码是多少?

(2)若从50个样本中属于第四组和第六组的所有人中随机抽取2人,设他们上学所需时间分别为ab,求满足的事件的概率;

(3)设学校配备的校车每辆可搭载40名学生,请根据抽样的结果估计全校应有多少辆这样的校车?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中的导函数,设,且恒成立.

1)求的取值范围;

2)设函数的零点为,函数的极小值点为,求证:.

查看答案和解析>>

同步练习册答案