精英家教网 > 高中数学 > 题目详情

【题目】如图,在中, 边上的高,沿折起,使

(Ⅰ)证明:平面平面

(Ⅱ)的中点,求与底面所成角的正切值。

【答案】(1)见解析;(2).

【解析】此题主要考查面面垂直和异面直线夹角公式的求法,第二问解题的关键是作出辅助线,此题是一道中档题,也是高考必考题;(1)已知在△ABC中,ADBC上的高,沿AD△ABC折起,使∠BDC=60°,可得AD⊥DCAD⊥DB,根据面面垂直的判定定理进行求解;

2)作辅助线,取DC中点F,连接EF,则EF∥BD,可得∠AEF为异面直线AEBD所成的角,再根据余弦定理和向量公式进行求解;

解(折起前AD是BC边上的高,

Δ ABD折起后,ADDC,ADDB,又DBDC=D,

AD平面BDC,AD 平面平面BDC平面ABD平面BDC----4

)由 BDC=及()知DA,DB,DC两两垂直,不防设=1,以D为坐标原点,以所在直线轴建立如图所示的空间直角坐标系,

易得D0,0,0),B1,0,0),C0,3,0),A0,0),E0),

==10,0,),

夹角的余弦值为

=

--------12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列 都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列.

(1)设数列分别为等差、等比数列,若 ,求

(2)设的首项为1,各项为正整数, ,若新数列是等差数列,求数列 的前项和

(3)设是不小于2的正整数),,是否存在等差数列,使得对任意的,在之间数列的项数总是?若存在,请给出一个满足题意的等差数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0≤φ≤)的部分图象,其图象与y轴交于点(0,
(Ⅰ)求函数的解析式;
(Ⅱ)若 , 求-的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|1﹣|
(1)求满足f(x)=2的x值;
(2)是否存在实数a,b,且0<a<b<1,使得函数y=f(x)在区间[a,b]上的值域为[a,2b],若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面,底面是直角梯形, 的中点.

1)求证:平面平面

2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直线PQ与⊙O切于点AAB是⊙O的弦,∠PAB的平分线AC交⊙O于点C,连接CB,并延长与直线PQ相交于Q点.

(1)求证:QC·ACQC2QA2

(2)若AQ=6,AC=5,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)= , g(x)是二次函数,若f(g(x))的值域是[0,+∞),则函数g(x)的值域是(  )
A.(﹣∞,﹣1]∪[1,+∞)
B.(﹣∞,﹣1]∪[0,+∞)
C.[0,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=af(x)﹣1(a>0且a≠1).
(Ⅰ)求k的值;
(Ⅱ)求g(x)在[﹣1,2]上的最大值;
(Ⅲ)当a=时,g(x)≤t2﹣2mt+1对所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设为实数,函数, .

1)求的单调区间与极值;

2)求证:当时, .

查看答案和解析>>

同步练习册答案