精英家教网 > 高中数学 > 题目详情

【题目】已知F1 , F2分别是椭圆C: =1(a>b>0)的两个焦点,P(1, )是椭圆上一点,且 |PF1|,|F1F2|, |PF2|成等差数列.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F2 , 且与椭圆C交于A、B两点,试问x轴上是否存在定点Q,使得 =﹣ 恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.

【答案】
(1)解:∵ |PF1|,|F1F2|, |PF2|成等差数列,

|PF1|+ |PF2|=2|F1F2|,即2 a=4c,∴a=

,解得

∴椭圆方程为


(2)解:假设在x轴上存在点Q(m,0),使得 恒成立.

① 当直线l的斜率为0时,A(﹣ ,0),B( ,0).

=(﹣ ﹣m,0), =( ﹣m,0).

=m2﹣2=﹣ ,解得 或m=﹣

②若直线l斜率不为0,设直线AB的方程为x=ty+1.

联立方程组 ,消元得:(t2+2)y2+2ty﹣1=0.

设A(x1,y1),B(x2,y2),则y1+y2=﹣ ,y1y2=﹣

∴x1+x2=t(y1+y2)+2=

x1x2=(ty1+1)(ty2+1)=t2y1y2+t(y1+y2)+1=

=(x1﹣m,y1), =(x2﹣m,y2).

=(x1﹣m)(x2﹣m)+y1y2=x1x2﹣m(x1+x2)+m2+y1y2

= +m2 = =﹣

,解得m=

综上,Q点坐标为( ,0)


【解析】(1)根据椭圆的性质及等差数列性质得出a= c,把P点坐标代入椭圆方程列方程组解出a,b得出椭圆方程;(2)设Q(m,0),当直线斜率为0时,求出A,B坐标,列方程解出m,当直线斜率不为0时,设AB方程为x=ty+1,联立方程组得出A,B坐标的关系,根据 =﹣ 列方程解出m.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)讨论f(x)的单调性;
(2)设a>0,证明:当0<x<a时,f(x+a)<f(a﹣x);
(3)设x1 , x2是f(x)的两个零点,证明:f′( )>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,锐角三角形ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为圆I与边CA的切点.

(1)求证A,I,H,E四点共圆;
(2)若∠C=50°,求∠IEH的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∠ABC=60°,E是BC中点,M是PD上的中点,F是PC上的动点. (Ⅰ)求证:平面AEF⊥平面PAD
(Ⅱ)直线EM与平面PAD所成角的正切值为 ,当F是PC中点时,求二面角C﹣AF﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点S、A、B、C在半径为 的同一球面上,点S到平面ABC的距离为 ,AB=BC=CA= ,则点S与△ABC中心的距离为(
A.
B.
C.1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是二次函数,若f(x)ex的一个极值点为x=﹣1,则下列图象不可能为f(x)图象的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2ln(x+1)+ ﹣(m+1)x有且只有一个极值. (Ⅰ)求实数m的取值范围;
(Ⅱ)若f(x1)=f(x2)(x1≠x2),求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已成椭圆 的离心率为 .其右顶点与上顶点的距离为 ,过点 的直线 与椭圆 相交于 两点.
(1)求椭圆 的方程;
(2)设 中点,且 点的坐标为 ,当 时,求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l1的方程为y= x,曲线C的参数方程为 (φ是参数,0≤φ≤π).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)分别写出直线l1与曲线C的极坐标方程;
(2)若直线 =0,直线l1与曲线C的交点为A,直线l1与l2的交点为B,求|AB|.

查看答案和解析>>

同步练习册答案