【题目】已知F1 , F2分别是椭圆C: =1(a>b>0)的两个焦点,P(1, )是椭圆上一点,且 |PF1|,|F1F2|, |PF2|成等差数列.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F2 , 且与椭圆C交于A、B两点,试问x轴上是否存在定点Q,使得 =﹣ 恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】
(1)解:∵ |PF1|,|F1F2|, |PF2|成等差数列,
∴ |PF1|+ |PF2|=2|F1F2|,即2 a=4c,∴a= .
∴ ,解得 .
∴椭圆方程为 .
(2)解:假设在x轴上存在点Q(m,0),使得 恒成立.
① 当直线l的斜率为0时,A(﹣ ,0),B( ,0).
∴ =(﹣ ﹣m,0), =( ﹣m,0).
∴ =m2﹣2=﹣ ,解得 或m=﹣ .
②若直线l斜率不为0,设直线AB的方程为x=ty+1.
联立方程组 ,消元得:(t2+2)y2+2ty﹣1=0.
设A(x1,y1),B(x2,y2),则y1+y2=﹣ ,y1y2=﹣ .
∴x1+x2=t(y1+y2)+2= ,
x1x2=(ty1+1)(ty2+1)=t2y1y2+t(y1+y2)+1= .
∵ =(x1﹣m,y1), =(x2﹣m,y2).
∴ =(x1﹣m)(x2﹣m)+y1y2=x1x2﹣m(x1+x2)+m2+y1y2
= ﹣ +m2﹣ = =﹣ .
∴ ,解得m= .
综上,Q点坐标为( ,0)
【解析】(1)根据椭圆的性质及等差数列性质得出a= c,把P点坐标代入椭圆方程列方程组解出a,b得出椭圆方程;(2)设Q(m,0),当直线斜率为0时,求出A,B坐标,列方程解出m,当直线斜率不为0时,设AB方程为x=ty+1,联立方程组得出A,B坐标的关系,根据 =﹣ 列方程解出m.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
(1)讨论f(x)的单调性;
(2)设a>0,证明:当0<x<a时,f(x+a)<f(a﹣x);
(3)设x1 , x2是f(x)的两个零点,证明:f′( )>0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,锐角三角形ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为圆I与边CA的切点.
(1)求证A,I,H,E四点共圆;
(2)若∠C=50°,求∠IEH的度数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∠ABC=60°,E是BC中点,M是PD上的中点,F是PC上的动点. (Ⅰ)求证:平面AEF⊥平面PAD
(Ⅱ)直线EM与平面PAD所成角的正切值为 ,当F是PC中点时,求二面角C﹣AF﹣E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点S、A、B、C在半径为 的同一球面上,点S到平面ABC的距离为 ,AB=BC=CA= ,则点S与△ABC中心的距离为( )
A.
B.
C.1
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2ln(x+1)+ ﹣(m+1)x有且只有一个极值. (Ⅰ)求实数m的取值范围;
(Ⅱ)若f(x1)=f(x2)(x1≠x2),求证:x1+x2>2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已成椭圆 的离心率为 .其右顶点与上顶点的距离为 ,过点 的直线 与椭圆 相交于 两点.
(1)求椭圆 的方程;
(2)设 是 中点,且 点的坐标为 ,当 时,求直线 的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l1的方程为y= x,曲线C的参数方程为 (φ是参数,0≤φ≤π).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)分别写出直线l1与曲线C的极坐标方程;
(2)若直线 =0,直线l1与曲线C的交点为A,直线l1与l2的交点为B,求|AB|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com