精英家教网 > 高中数学 > 题目详情
6.如图,在直角三角形BMC中,∠BCM=90°,∠MBC=60°,BM=5,MA=3,且MA⊥AC,AB=4.求MC与平面ABC所成角的正弦值.

分析 由勾股定理得MA⊥AB,从而得到MA⊥平面ABC,进而得到∠MCA是MC与平面ABC所成的角,由此能求出MC与平面ABC所成角的正弦值.

解答 解:∵BM=5,MA=3,AB=4,∴AB2+AM2=BM2
∴MA⊥AB,
又∵MA⊥AC,AB、AC?平面ABC,且AB∩AC=A,
∴MA⊥平面ABC,
∴∠MCA是MC与平面ABC所成的角,
∵∠MBC=60°,∴BC=$\frac{1}{2}MB$=$\frac{5}{2}$,MC=$\sqrt{{5}^{2}-(\frac{5}{2})^{2}}$=$\frac{5\sqrt{3}}{2}$,
∴sin∠MCA=$\frac{MA}{MC}$=$\frac{3}{\frac{5\sqrt{3}}{2}}$=$\frac{2\sqrt{3}}{5}$,
∴MC与平面ABC所成角的正弦值为$\frac{2\sqrt{3}}{5}$.

点评 本题考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.集合A={1,4,x},B={x2,1},B⊆A,则满足条件的实数x的值为(  )
A.1或0B.1,0或2C.0,2或-2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.点(a,a-1)在圆x2+y2-2y-9=0的内部,则a的取值范围是(  )
A.-1<a<3B.1<a<3C.$\frac{1}{5}$<a<1D.-$\frac{1}{5}$<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:
(1)${log_{2.5}}6.25+lg\frac{1}{100}+ln(e\sqrt{e})+{log_2}({log_2}16)$;
(2)已知x+x-1=4,求x2+x-2-4的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=ax2+bx+1是定义在[a+1,2a]上的偶函数,那么a+b的值为(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等腰三角形ABC中CA=CB,底边长AB=2,现以边AB为轴旋转一周,得旋转体.
(1)当∠A=60°时,求此旋转体的体积;
(2)比较当∠A=60°、∠A=45°时,两个旋转体表面积的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设常数a使方程2sin(x+$\frac{π}{3}$)=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=$\frac{7π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.等差数列{an}中,a2=4,a4+a7=15.
(1)求数列{an}的通项公式;
(2)设bn=2an-2+n,求{bn}的前n项和Sn
(3)求数列{$\frac{1}{{{a}_{n}}^{2}-1}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.记log827=m,用m表示log616=$\frac{4}{1+m}$;已知log37=a,log34=b,则log1221=$\frac{1+a}{1+b}$.

查看答案和解析>>

同步练习册答案