精英家教网 > 高中数学 > 题目详情

【题目】为了比较两位运动员甲和乙的打靶成绩,在相同条件下测得各打靶次所得环数(已按从小到大排列)如下:

甲的环数:

乙的环数:

1)完成茎叶图,并分别计算两组数据的平均数及方差;

2)(i)根据(1)的结果,分析两人的成绩;

ii)如果你是教练,请你作出决策:根据对手实力的强弱分析应该派两人中的哪一位上场比赛.

【答案】1)作图见解析;甲的环数的平均数为,方差;乙的环数的平均数为,方差为2)(i)详见解析(ii)应派乙上场

【解析】

1)由茎叶图中的数据分别计算两组数据的平均数和方差;

2)(ⅰ)平均数相同的情况下,方差小说明数据比较集中,稳定,判断甲乙的成绩好坏;

(ⅱ)根据对手的成绩是否大于平均分来判断.

解:(1)完成茎叶图,如图所示.

甲的环数的平均数为.

方差

乙的环数的平均数为.

方差为

2)(i)由(1)知,,这表明甲乙二人打靶的平均水平相当,但甲成绩更稳定.

ii)由此作出决策:若对手实力较弱(以往平均成绩小于),则应派甲上场,这样胜率较大;若对手实力较强(以往平均成绩超过),则应派乙上场,这样可以拼一下.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高三课外兴趣小组为了了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:

打算观看

不打算观看

女生

20

b

男生

c

25

1)求出表中数据bc

2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;

3)在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.

附:

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列项和为,且满足

(1)求数列的通项公式;

(2)求数列项和

(3)在数列中,是否存在连续的三项,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】詹姆斯·哈登(James Harden)是美国NBA当红球星,自2012年10月加盟休斯顿火箭队以来,逐渐成长为球队的领袖.2017-18赛季哈登当选常规赛MVP(最有价值球员).

年份

2012-13

2013-14

2014-15

2015-16

2016-17

2017-18

年份代码t

1

2

3

4

5

6

常规赛场均得分y

25.9

25.4

27.4

29.0

29.1

30.4

(Ⅰ)根据表中数据,求y关于t的线性回归方程*);

(Ⅱ)根据线性回归方程预测哈登在2019-20赛季常规赛场均得分.

(附)对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:

(参考数据,计算结果保留小数点后一位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB是抛物线Cy24x上两点,线段AB的垂直平分线与x轴有唯一的交点Px00).

(1)求证:x02

(2)若直线AB过抛物线C的焦点F,且|AB|10,求|PF|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入种黄瓜的年收入与投入(单位:万元)满足.设甲大棚的投入为(单位:万元),每年两个大棚的总收益为(单位:万元)

1)求的值;

2)试问如何安排甲、乙两个大棚的投入,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:

男生测试情况:

抽样情况

病残免试

不合格

合格

良好

优秀

人数

5

10

15

47

女生测试情况

抽样情况

病残免试

不合格

合格

良好

优秀

人数

2

3

10

2

1)现从抽取的1000名且测试等级为优秀的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;

2)若测试等级为良好优秀的学生为体育达人其它等级的学生(含病残免试非体育达人根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为是否为体育达人与性别有关?

男性

女性

总计

体育达人

非体育达人

总计

临界值表:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

:( 其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018131日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在1948分,2051分食既,2129分食甚,2207分生光,2311分复圆.月全食伴随有蓝月亮和红月亮,全食阶段的红月亮在食既时刻开始,生光时刻结束.小明准备在19552156之间的某个时刻欣赏月全食,则他等待红月亮的时间不超过30分钟的概率是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法正确的是(

A.时,处的切线方程为

B.时,存在唯一极小值点,且

C.对任意上均存在零点

D.存在上有且只有一个零点

查看答案和解析>>

同步练习册答案