精英家教网 > 高中数学 > 题目详情
已知直线l1:2x-y+1=0,l2:x-3y-=0,则l1到l2的角是(  )
A、45°B、60°
C、120°D、135°
考点:两直线的夹角与到角问题
专题:直线与圆
分析:由直线的方程可得直线的斜率,由到角公式可得.
解答: 解:∵直线l1:2x-y+1=0,l2:x-3y-=0,
∴l1和l2的斜率分别为k1=2,k2=
1
3

设l1到l2的角为α,
则tanα=
k2-k1
1+k1k2
=
1
3
-2
1+2×
1
3
=-1
∴l1到l2的角α=135°
故选:D
点评:本题考查两直线的夹角和到角问题,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某专营店经销某商品,当售价不高于10元时,每天能销售100件,当价格高于10元时,每提高1元,销量减少3件,若该专营店每日费用支出为500元,用x表示该商品定价,y表示该专营店一天的净收入(除去每日的费用支出后的收入).
(1)把y表示成x的函数;
(2)试确定该商品定价为多少元时,一天的净收入最高?并求出净收入的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)为偶函数,x>0时,f(x)单调递增,P=f(-π),Q=f(e),R=f(
2
),则P,Q,R的大小为(  )
A、R>Q>P
B、Q>R>P
C、P>R>Q
D、P>Q>R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+2x-3=0.
(1)求过点P(1,3)且与圆C相切的直线方程;
(2)问是否存在斜率为1的直线l,使以l被圆C截得的弦AB为直线的圆经过原点?若存在,请求出的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是一个直角梯形,AB∥CD,∠ABC=90°.CD=3,BC=2,AB=5,AA1=2
5

(I)若A1A=A1D,点O在线段AB上,且AO=2,A1O=4,求证:A1O⊥平面ABCD;
(II)试判断AB1与平面A1C1D是否平行,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程2x=a2有负实数根,则实数a的取值范围是(  )
A、(-1,1)
B、(-∞,0)∪(0,+∞)
C、(-1,0)∪(0,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线x2+y+1=0与双曲线x2-
y2
b2
=1(b>0)的渐近线相切,则此双曲线的焦距等于(  )
A、2
2
B、2
3
C、4
D、2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在半径为10
3
cm的半圆形(O为圆心)铁皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上,将所截得的矩形铁皮ABCD卷成一个以AD为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),记圆柱形罐子的体积为V(cm3).
(1)按下列要求建立函数关系式:
①设AD=xcm,将V表示为x的函数;
②设∠AOD=θ(rad),将V表示为θ的函数;
(2)请您选用(1)问中的一个函数关系,求圆柱形罐子的最大体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b表示两条直线,α,β表示两个平面,下列命题中正确的是(  )
A、a∥b,b?α,则a∥α
B、a∥α,a?β,α∩β=b,则a∥b
C、α∥β,a?α,b?β,则a∥b
D、a∥α,b∥α,则a∥b

查看答案和解析>>

同步练习册答案