设,函数.
(1)若,求函数的极值与单调区间;
(2)若函数的图象在处的切线与直线平行,求的值;
(3)若函数的图象与直线有三个公共点,求的取值范围.
(1)见解析;(2);(3).
解析试题分析:(1)求出,然后令和即可得出单调区间,然后判断出最值;(2)根据函数在某一点的导数是以该点为切点的切线的斜率可得,解得;(3)根据对 进行分类他讨论,然后通过判断极值和-2的大小即可求解.
试题解析:
(1)时,,当时,,当,或时,,所以,的单调减区间为,单调增区间为和;当时,有极小值,当时,有极大值.
(2) ,所以,此时,切点为,切线方程为,它与已知直线平行,符合题意.
(3)当时,,它与没有三个公共点,不符合题意.
当时,由知,在和上单调递增,在上单调递减,又,,所以,即,
又因为,所以;
当时,由知,在和上单调递减,在上单调递增,又,,所以,即,又因为,所以;
综上所述,的取值范围是.
考点:1.导数求函数的单调性和极值;2.导数求切线的斜率;3.极值在求函数焦点个数中的应用.
科目:高中数学 来源: 题型:解答题
设函数.
(1)当,时,求函数的最大值;
(2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;
(3)当,,时,方程有唯一实数解,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数.己知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求的值;
(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得利润最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com