精英家教网 > 高中数学 > 题目详情
6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的周长为6
(Ⅰ)求椭圆C的方程;
(Ⅱ)设F1,F2是椭圆C的左右焦点,若椭圆C的一个内接平行四边形ABCD的一组对边过点F1和F2,求这个平行四边形的面积的最大值.

分析 (Ⅰ)由题意可得:$b=\sqrt{3}c$,2a+2c=6,a2=b2+c2,解出即可得出.
(II)设过椭圆右焦点F2的直线l:x=ty+1与椭圆交于A,B两点,与椭圆方程联立得:(3t2+4)y2+6ty-9=0,由此利用韦达定理、弦长公式、平行四边形面积、函数单调性,能求出平行四边形面积的最大值.

解答 解:(Ⅰ)由题意可得:$b=\sqrt{3}c$,2a+2c=6,a2=b2+c2
解得a=2,c=1,b=$\sqrt{3}$.
∴椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
(II)设过椭圆右焦点F2的直线l:x=ty+1与椭圆交于A,B两点,
则$\left\{\begin{array}{l}{x=ty+1}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,整理,得:(3t2+4)y2+6ty-9=0,
∴y1+y2=$\frac{-6t}{3{t}^{2}+4}$,y1y2=$\frac{-9}{3{t}^{2}+4}$,
∴|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{(\frac{-6t}{3{t}^{2}+4})^{2}+\frac{36}{3{t}^{2}+4}}$=$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$,
∴S△AOB=${S}_{△O{F}_{1}A}+{S}_{△O{F}_{1}B}$=$\frac{1}{2}$|y1-y2||OF|=$\frac{6\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$,
椭圆C的内接平行四边形面积为S=4S△OAB=$\frac{24\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$.
令m=$\sqrt{1+{t}^{2}}$≥1,则S=f(m)=$\frac{24m}{3{m}^{2}+1}$=$\frac{24}{3m+\frac{1}{m}}$,
注意到S=f(m)在[1,+∞)上单调递减,∴Smax=f(1)=6,
当且仅当m=1,即t=0时等号成立.故这个平行四边形面积的最大值为6.

点评 本题考查了椭圆的标准方程及其性质、弦长公式、三角形面积计算公式、换元法、函数的单调性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.一个高为2的三棱锥的三视图如图所示,其中俯视图是一个腰长为2的等腰直角三角形,则该几何体外接球的体积(  )
A.12πB.C.$4\sqrt{3}π$D.$\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=($\frac{1}{2}$)x-x-2的零点所在的区间为(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知p:(x+2)(x-2)≤0.q:x2-3x-4≤0,若p∧q为假,p∨q为真.求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知动点M(x,y)到定点F(0,2)的距离等于M到x轴的距离,求证:点M的轨迹方程是y=$\frac{{x}^{2}}{4}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.有下列四个命题:
①“若xy=1,则x、y互为倒数”的逆命题;
②“相似三角形的周长相等”的否命题;
③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;
④若“A∪B=B,则A=B”的逆否命题.
其中的真命题是(  )
A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某四棱锥的三视图如图所示,该四棱锥的表面积为(  )
A.$1+\sqrt{2}$B.3C.$2+\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.任取一个3位正整数n,则对数log2n是一个正整数的概率为(  )
A.$\frac{1}{225}$B.$\frac{1}{300}$C.$\frac{1}{450}$D.以上全不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$({x+y})({\frac{1}{x}+\frac{a}{y}})≥16$对任意x,y∈R*恒成立,则正实数a的最小值为(  )
A.2B.4C.6D.9

查看答案和解析>>

同步练习册答案