精英家教网 > 高中数学 > 题目详情
15.如图,已知PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点,若AD=PA=a,$AB=\sqrt{2}a$.
(1)在PC上是否存在一点Q,使得AQ∥平面MND?若存在,求出该点的位置,若不存在,请说明理由;
(理)(2)求二面角N-MD-C大小.
(文)(2)求三棱锥P-MND的体积.

分析 (1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,求出平面DMN的法向量,设在PC上存在一点Q(x1,y1,z1),且$\overrightarrow{PQ}$=t$\overrightarrow{PC}$,使得AQ∥平面MND,求出$\overrightarrow{AQ}$,由$\overrightarrow{n}$$•\overrightarrow{AQ}$=0,能求出Q点的位置.
(2)(理)求出平面DMN的法向量和平面MDC的法向量,由此利用向量法能求出二面角N-MD-C大小.
(文)利用等体积转换,即可求三棱锥P-MND的体积.

解答 解:(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
由已知得D(a,0,0),P(0,0,a),M(0,$\frac{\sqrt{2}}{2}$a,0),C(a,$\sqrt{2}a$,0),N($\frac{a}{2}$,$\frac{\sqrt{2}}{2}$a,$\frac{a}{2}$),
∴$\overrightarrow{DM}$=(-a,$\frac{\sqrt{2}}{2}$a,0),$\overrightarrow{DN}$=(-$\frac{a}{2}$,$\frac{\sqrt{2}}{2}$a,$\frac{a}{2}$),
设平面DMN的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{-ax+\frac{\sqrt{2}}{2}ay=0}\\{-\frac{a}{2}x+\frac{\sqrt{2}}{2}ay+\frac{a}{2}z=0}\end{array}\right.$,
取y=$\sqrt{2}$,得$\overrightarrow{n}$=(1,$\sqrt{2}$,-1),
设在PC上存在一点Q(x1,y1,z1),且$\overrightarrow{PQ}$=t$\overrightarrow{PC}$,使得AQ∥平面MND,
则(x1,y1,z1-a)=(ta,$\sqrt{2}ta$,-ta),0≤t≤1,∴Q(ta,$\sqrt{2}ta$,a-ta),
$\overrightarrow{AQ}$=(ta,$\sqrt{2}ta$,a-ta),
∴$\overrightarrow{n}$$•\overrightarrow{AQ}$=ta+2ta-a+ta=0,解得t=$\frac{1}{4}$,
∴在PC上存在一点Q,使得AQ∥平面MND,且$\overrightarrow{PQ}$=$\frac{1}{4}$$\overrightarrow{PC}$,点Q($\frac{1}{4}a,\frac{\sqrt{2}}{4}a$,$\frac{3}{4}$a).
(2)(理)平面DMN的法向量$\overrightarrow{n}$=(1,$\sqrt{2}$,-1),平面MDC的法向量$\overrightarrow{m}$=(0,0,1),
设二面角N-MD-C的平面角的大小为θ,
则cosθ=|cos<$\overrightarrow{m},\overrightarrow{n}$>|=|$\frac{-1}{\sqrt{4}}$|=$\frac{1}{2}$,
∴θ=60°,即二面角N-MD-C大小为60°.
(文)S△PDN=$\frac{1}{2}{S}_{△PDC}$=$\frac{1}{2}×$$\frac{1}{2}×\sqrt{2}a×\sqrt{2}a$=$\frac{{a}^{2}}{2}$,
M到平面PDN的距离=A到平面PDC的距离=$\sqrt{2}$a,
∴三棱锥P-MND的体积=$\frac{1}{3}×\frac{{a}^{2}}{2}×\sqrt{2}a$=$\frac{\sqrt{2}}{6}{a}^{3}$.

点评 本题考查满足条件的点是否存在的判断与求法,考查二面角的大小的求法,考查求三棱锥P-MND的体积,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知椭圆的焦距为4$\sqrt{3}$,椭圆上动点P与两个焦点距离乘积的最大值为13,则该椭圆的标准方程是$\frac{{x}^{2}}{13}+{y}^{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若$\frac{a}{b+c}$=$\frac{b}{c+a}$=$\frac{c}{a+b}$=k,则k=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图1,在菱形ABCD中,AC=2,BD=2$\sqrt{3}$,AC,BD相交于点O.
(1)求边AB的长;
(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.
①判断△AEF是哪一种特殊三角形,并说明理由;
②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在极坐标系内,已知A(2,$\frac{π}{4}$),B(2,$\frac{5π}{4}$)
(1)求|AB|的长;
(2)若A,B是等边三角形的两个顶点,求另一个顶点C的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C上的动点P到两定点O(0,0),A(3,0)的距离之比为$\frac{1}{2}$.
(1)求曲线C的方程;
(2)若直线l的方程为y=kx-2,其中k<-2,且直线l交曲线C于A,B两点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数$f(x)=lnx+ax+\frac{1}{x}$在[1,+∞)上是单调函数,则a的取值范围是(  )
A.$(-∞,0]∪[\frac{1}{4},+∞)$B.$(-∞,-\frac{1}{4}]∪[0,+∞)$C.$[-\frac{1}{4},0]$D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)=x+\frac{1}{x}$在区间$[{\frac{1}{3},3}]$上的最小值是(  )
A.2B.3C.4D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若全集U={0,1,2,3,4}且∁UA={2,4},则集合A的真子集共有(  )个.
A.8个B.7个C.4个D.3个

查看答案和解析>>

同步练习册答案