精英家教网 > 高中数学 > 题目详情

(12分)
用定义法证明:函数在(1,+∞)上是减函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题12分)已知).
(1)判断函数的奇偶性,并证明;
(2)若,用单调性定义证明函数在区间上单调递减;
(3)是否存在实数,使得的定义域为时,值域为
,若存在,求出实数的取值范围;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设定义域都为的两个函数的解析式分别为
(1)求函数的值域;
(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)已知函数
(1)用分段函数的形式表示该函数;
(2)在坐标系中画出该函数的图像
(3)写出该函数的定义域,值域,奇偶性和单调区间(不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+2ax+2,x∈[-5,5].
(1)当a=-1时,求函数f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在[-5,5]上是单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)求证:不论为何实数总是为增函数;
(II)确定的值, 使为奇函数;
(Ⅲ)当为奇函数时, 求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知函数的定义域为,且满足条件:
,②③当
1)、求的值
2)、讨论函数的单调性;
3)、求满足的x的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
.已知函数 是奇函数.
(1)求实数的值;
(2)若函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

同步练习册答案