精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=(kx+a)ex的极值点为﹣a﹣1,其中k,a∈R,且a≠0.
(1)若曲线y=f(x)在点A(0,a)处的切线l与直线y=|2a﹣2|x平行,求l的方程;
(2)若a∈[1,2],函数f(x)在(b﹣ea , 2)上为增函数,求证:e2﹣3≤b<ea+2.

【答案】
(1)解:当k=0时,f(x)无极值,故k≠0.

由f'(x)=(kx+a+k)ex=0,

∴a+k=ak+k.

∵a≠0,∴k=1.

∵f'(0)=a+1=|2a﹣2|,∴a=3或

当a=3时,f(x)=(x+3)ex,f(0)=3,

∴l的方程为y=4x+3.

时,

∴l的方程为


(2)证明:由题可知f'(x)=(x+a+1)ex≥0对x∈(b﹣ea,2)恒成立,

∵ex>0,∴x+a+1≥0,即x≥﹣a﹣1对x∈(b﹣ea,2)恒成立,

∴﹣a﹣1≤b﹣ea,即b≥ea﹣a﹣1对a∈[1,2]恒成立.

设g(a)=ea﹣a﹣1,a∈[1,2],则g'(a)=ea﹣1>0,

∴g(a)在[1,2]上递增,∴ ,∴b≥e2﹣3.

又(b﹣ea<2,∴e2﹣3≤b<ea+2


【解析】(1)求出函数的导数,求出k的值,从而求出a的值,带入a的值,求出切线方程即可;(2)问题转化为x≥﹣a﹣1对x∈(b﹣ea , 2)恒成立,根据﹣a﹣1≤b﹣ea , 即b≥ea﹣a﹣1对a∈[1,2]恒成立,设g(a)=ea﹣a﹣1,a∈[1,2],根据函数的单调性证明即可.
【考点精析】解答此题的关键在于理解函数的极值与导数的相关知识,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的公差为d,且2a1=d,2an=a2n﹣1.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程是 (α为参数)
(1)将C的参数方程化为普通方程;
(2)在直角坐标系xOy中,P(0,2),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρcosθ+ ρsinθ+2 =0,Q为C上的动点,求线段PQ的中点M到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的长轴长为 ,左焦点的坐标为(﹣2,0);
(1)求C的标准方程;
(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且 ,试求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在Rt△AOB中, ,AB边上的高线为OD,点E位于线段OD上,若 ,则向量 在向量 上的投影为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面中,面积最大的是(
A.8
B.
C.12
D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的 中点.

(Ⅰ)若PA=PD,求证:平面PQB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,试
确定点M的位置,使二面角M﹣BQ﹣C大小为60°,并求出 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A,B,C的坐标分别为(﹣ ,0),( ,0),(m,n),G,O′,H分别为△ABC的重心,外心,垂心.

(1)写出重心G的坐标;
(2)求外心O′,垂心H的坐标;
(3)求证:G,H,O′三点共线,且满足|GH|=2|OG′|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=2,b+c=4,求△ABC的面积.

查看答案和解析>>

同步练习册答案