精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的公差d>0,其前n项和为Sn , 若S3=12,且2a1 , a2 , 1+a3成等比数列.
(1)求数列{an}的通项公式;
(2)记bn= (n∈N*),且数列{bn}的前n项和为Tn , 证明: ≤Tn

【答案】
(1)解:依题意,得

,得d2+d﹣12=0.

∵d>0,∴d=3,a1=1.

∴数列{an}的通项公式an=1+3(n﹣1)=3n﹣2


(2)证明:∵

前n项和为Tn= (1﹣ + +…+

= ×(1﹣ )=

由Tn递增,可得Tn≥T1=

又Tn ,则


【解析】(1)由等差数列的通项公式和等比数列的性质,解方程可得首项和公差,即可得到所求通项公式;(2)求得bn= ),再由数列的求和方法:裂项相消求和,结合数列的单调性和不等式的性质,即可得证.
【考点精析】掌握数列的前n项和是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数有三个不同的极值点,求的值;

(2)若存在实数,使对任意的,不等式恒成立,求正整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线与直线垂直,求函数的极值;

(2)设函数.=时,若区间[1,e]上存在x0,使得,求实数的取值范围.(为自然对数底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ ,且此函数图象过点(1,5).
(1)求函数m的值;
(2)判断函数f(x)在[2,+∞)上的单调性?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论:①y=1是幂函数;
②定义在R上的奇函数y=f(x)满足f(0)=0
③函数 是奇函数
④当a<0时,
⑤函数y=1的零点有2个;
其中正确结论的序号是(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+3x+a
(1)当a=﹣2时,求不等式f(x)>2的解集
(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(a,b)(ab≠0)是圆x2+y2=r2内的一点,直线m是以P为中点的弦所在直线,直线l的方程为ax+by=r2 , 那么(
A.m∥l,且l与圆相交
B.m⊥l,且l与圆相切
C.m∥l,且l与圆相离
D.m⊥l,且l与圆相离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合M={x|0≤x≤2},N={y|0≤y≤2},给出如下四个图形,其中能表示从集合M到集合N的函数关系的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax+5(a>1),
(1)若f(x)的定义域和值域均是[1,a],求实数a的值;
(2)若f(x)在区间(﹣∞,2]上是减函数,且对任意的x∈[1,a+1],都有f(x)≤0,求实数a的取值范围;
(3)若g(x)=2x+log2(x+1),且对任意的x∈[0,1],都存在x0∈[0,1],使得f(x0)=g(x)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案