精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系中,椭圆的左、右焦点分别为.已知都在椭圆上,其中为椭圆的离心率.
(1)求椭圆的方程;
(2)设是椭圆上位于轴上方的两点,且直线与直线平行,交于点P.
(i)若,求直线的斜率;
(ii)求证:是定值.
见解析
【考点】椭圆的性质,直线方程,两点间的距离公式。
(1)根据椭圆的性质和已知都在椭圆上列式求解。
(2)根据已知条件,用待定系数法求解
解:(1)由题设知,,由点在椭圆上,得
,∴
由点在椭圆上,得

∴椭圆的方程为
(2)由(1)得,又∵
∴设的方程分别为

。①
同理,。②
(i)由①②得,。解=2。
∵注意到,∴
∴直线的斜率为
(ii)证明:∵,∴,即

由点在椭圆上知,,∴
同理。

由①②得,

是定值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。
(I)求曲线的方程;
(II)试证明:在轴上存在定点,使得总能被轴平分

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C方程:(x-1)2 + y 2=9,垂直于x轴的直线L与圆C相切于N点(N在圆心C的右侧),平面上有一动点P,若PQ⊥L,垂足为Q,且

(1)求点P的轨迹方程; 
(2)已知D为点P的轨迹曲线上第一象限弧上一点,O为原点,A、B分别为点P的轨迹曲线与轴的正半轴的交点,求四边形OADB的最大面积及D点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点在x轴上,离心率
(1)求椭圆E的方程;
(2)求的角平分线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为. 过抛物线上一点M作的垂线,垂足为E. 若|EF|=|MF|,点M的横坐标是3,则p = ______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的顶点在原点,焦点为F(2, 0)。
(1)求抛物线C的方程;
(2)过的直线交曲线两点,又的中垂线交轴于点
的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在平面直角坐标系xOy中,已知定点A(-2,0)、B(2,0),M是动点,且直线MA与直线MB的斜率之积为,设动点M的轨迹为曲线C.
(I)求曲线C的方程;
(II)过定点T(-1,0)的动直线与曲线C交于P,Q两点,若,证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
(文)如图,|AB|=2,O为AB中点,直线过B且垂直于AB,过A的动直线与交于点C,点M在线
段AC上,满足=.
(I)求点M的轨迹方程;
(II)若过B点且斜率为- 的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,求当ΔBPQ为锐角三角形时t的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

求椭圆(  )。
A.4 B.C.D.

查看答案和解析>>

同步练习册答案