【题目】如图,在直三棱柱ABC﹣A1B1C1中,三角形ABC为等腰直角三角形,AC=BC= ,AA1=1,点D是AB的中点.
(1)求证:AC1∥平面CDB1;
(2)二面角B1﹣CD﹣B的平面角的大小.
【答案】
(1)证明:在直三棱柱ABC﹣A1B1C1中,
设BC1∩B1C=E,则E为BC1的中点,连接ED
∵D为AB的中点,∴ED∥AC
又∵ED平面CDB1,AC1平面CDB1,
∴AC1∥平面CDB1.
(2)解:∵△ABC中,AC=BC,D为AB中点,∴CD⊥AB,
又∵BB1⊥平面ABC,CD平面ABC,∴BB1⊥CD,
又AB∩BB1=B,∴CD⊥平面ABB1A1,
∵B1D平面ABB1A1,AB平面ABB1A1
∴CD⊥B1D,CD⊥AB,
∴∠B1DB为二面角B1﹣CD﹣B的平面角
∵三角形ABC中,AB=2,∴BD=1,
在Rt△B1BD中, ,
∴∠B1BD=45°,
∴二面角B1﹣CD﹣B的平面角的大小为45°.
【解析】(1)设BC1∩B1C=E,连接ED,则ED∥AC,由此能证明AC1∥平面CDB1.(2)推导出CD⊥AB,BB1⊥CD,从而CD⊥平面ABB1A1,进而CD⊥B1D,CD⊥AB,∠B1DB为二面角B1﹣CD﹣B的平面角,由此能求出二面角B1﹣CD﹣B的平面角的大小.
【考点精析】关于本题考查的直线与平面平行的判定,需要了解平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知R(x0 , y0)是椭圆C: =1上的一点,从原点O向圆R:(x﹣x0)2+(y﹣y0)2=8作两条切线,分别交椭圆于点P,Q.
(1)若R点在第一象限,且直线OP,OQ互相垂直,求圆R的方程;
(2)若直线OP,OQ的斜率存在,并记为k1 , k2 , 求k1k2的值;
(3)试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数fk(x)=ax+ka﹣x , (k∈Z,a>0且a≠1). (Ⅰ)若f1(1)=3,求f1( )的值;
(Ⅱ)若fk(x)为定义在R上的奇函数,且a>1,是否存在实数λ,使得fk(cos2x)+fk(2λsinx﹣5)<0对任意x∈[0, ]恒成立,若存在,请求出实数k的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加抽奖,抽奖有两种方案可供选择. 方案一:从装有4个红球和2个白球的不透明箱中,随机摸出2个球,若摸出的2个球都是红球则中奖,否则不中奖;
方案二:掷2颗骰子,如果出现的点数至少有一个为4则中奖,否则不中奖.(注:骰子(或球)的大小、形状、质地均相同)
(Ⅰ)有顾客认为,在方案一种,箱子中的红球个数比白球个数多,所以中奖的概率大于 .你认为正确吗?请说明理由;
(Ⅱ)如果是你参加抽奖,你会选择哪种方案?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系x0y中,已知点A(﹣ ,0),B( ),E为动点,且直线EA与直线EB的斜率之积为﹣ . (Ⅰ)求动点E的轨迹C的方程;
(Ⅱ)设过点F(1,0)的直线l与曲线C相交于不同的两点M,N.若点P在y轴上,且|PM|=|PN|,求点P的纵坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,PD⊥底面ABCD,点M、N分别是棱AB、CD的中点.
(1)证明:BN⊥平面PCD;
(2)在线段PC上是否存在点H,使得MH与平面PCD所成最大角的正切值为 ,若存在,请求出H点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=sin(x﹣ )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移 个单位,得到的图象对应的解析式是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,AD⊥平面PAB,△PAB是正三角形,AD=AB=2,BC=1,E是线段AB的中点
(1)求证:平面PDE⊥平面ABCD;
(2)设直线PC与平面PDE所成角为θ,求cosθ
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com