精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知椭圆过点,且离心率为.

  (Ⅰ)求椭圆的方程;

  (Ⅱ)为椭圆的左、右顶点,直线轴交于点,点是椭圆上异于

的动点,直线分别交直线两点.证明:恒为定值.

 

【答案】

(Ⅰ). (Ⅱ)为定值.证明见解析。

【解析】本试题主要是考出了椭圆方程的求解,椭圆的几何性质,直线与椭圆的位置关系的运用的综合考查,体现了运用代数的方法解决解析几何的本质的运用。

(1)首先根据题意的几何性质来表示得到关于a,b,c的关系式,从而得到其椭圆的方程。

(2设出直线方程,设点P的坐标,点斜式得到AP的方程,然后联立方程组,可知借助于韦达定理表示出长度,进而证明为定值。

(Ⅰ)解:由题意可知,

解得.        …………4分

所以椭圆的方程为.     …………5分

(Ⅱ)证明:由(Ⅰ)可知,.设,依题意

于是直线的方程为,令,则.

.               …………7分

又直线的方程为,令,则

.               …………9分

 …………11分

上,所以,即,代入上式,

,所以为定值.          …………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源:安徽省合肥一中、六中、一六八中学2010-2011学年高二下学期期末联考数学(理 题型:解答题

(本题满分12分)已知△的三个内角所对的边分别为.,且.(1)求的大小;(2)若.求.

查看答案和解析>>

科目:高中数学 来源:2011届本溪县高二暑期补课阶段考试数学卷 题型:解答题

(本题满分12分)已知各项均为正数的数列
的等比中项。
(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题

(本题满分12分)

已知椭圆的长轴长是短轴长的倍,是它的左,右焦点.

(1)若,且,求的坐标;

(2)在(1)的条件下,过动点作以为圆心、以1为半径的圆的切线是切点),且使,求动点的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省高二上学期10月月考理科数学卷 题型:解答题

(本题满分12分)已知椭圆的长轴,短轴端点分别是A,B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量是共线向量

(1)求椭圆的离心率

(2)设Q是椭圆上任意一点,分别是左右焦点,求的取值范围

 

查看答案和解析>>

同步练习册答案