精英家教网 > 高中数学 > 题目详情
已知P是椭圆
x2
4
+
y2
3
=1上的一点,F1、F2是该椭圆的两个焦点,若△PF1F2的内切圆的半径为
1
2
,则tan∠F1PF2=(  )
分析:作出图形,利用内切圆的性质与椭圆的定义及半角公式即可求得tan∠F1PF2的值.
解答:解:根据题意作图如下,设△PF1F2的内切圆心为M,则内切圆的半径|MQ|=
1
2
,设圆M与x轴相切于R,

∵椭圆的方程为
x2
4
+
y2
3
=1,
∴椭圆的两个焦点F1(-1,0),F2(1,0),
∴|F1F2|=2,设|F1R|=x,则|F2R|=2-x,
依题意得,|F1S|=|F1R|=x,|F2Q|=|F2R|=2-x,
设|PS|=|PQ|=y,
∵|PF1|=x+y,|PF2|=(2-x)+y,|PF1|+|PF2|=4,
∴x+y+(2-x)+y=4,
∴y=1,即|PQ|=1,又|MQ|=
1
2
,MQ⊥PQ,
∴tan∠MPQ=
|MQ|
|PQ|
=
1
2
1
=
1
2

∴tan∠F1PF2=tan2∠MPQ=
1
2
1-(
1
2
)
2
=
4
3

故选B.
点评:本题考查椭圆的简单性质,考查内切圆的性质及半角公式,考查分析问题,通过转化思想解决问题的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P是椭圆
x2
4
+
y2
3
=1
上不同于左顶点A、右顶点B的任意一点,记直线PA,PB的斜率分别为k1,k2,则k1•k2的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是椭圆
x2
4
+y2=1
上的一动点,则点P到直线x+2y=0的距离最大值为
2
10
5
2
10
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都二模)已知P是椭圆
x2
4
+
y2
3
=1上的一点,F1、F2是该椭圆的两个焦点,若△PF1F2的内切圆半径为
1
2
,则
PF1
PF2
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是椭圆
x2
4
+y2=1
上的一点,F1、F2是椭圆的两个焦点,若△F1PF2的面积为
3
3
,则∠F1PF2等于(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

同步练习册答案