精英家教网 > 高中数学 > 题目详情

【题目】已知函数. 

(Ⅰ)若,证明:函数上的减函数;

(Ⅱ)若曲线在点处的切线与直线平行,求的值;

(Ⅲ)若,证明: (其中…是自然对数的底数).

【答案】(I)详见解析;(II);(III)详见解析.

【解析】试题分析:

(1)由题意二次求导可得,函数上的减函数.

(2)利用题意由导函数研究函数的切线得到关于a的方程,解方程可得.

(3)原不等式等价于,结合(1)的结论构造函数,令,可证得

试题解析:

(Ⅰ)当时,函数的定义域是,所以

,只需证: 时,

上为减函数,

所以

所以,函数上的减函数.

(Ⅱ)由题意知, ,且

所以,即有

上的增函数,又,因此的唯一零点,

即方程有唯一实根,所以

(Ⅲ)因为

故原不等式等价于

由(Ⅰ)知,当时, 上的减函数,

故要证原不等式成立,只需证明:当时,

,则 上的增函数,

所以,即,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分别求适合下列条件的标准方程:

1)实轴长为12,离心率为,焦点在x轴上的椭圆;

2)顶点间的距离为6,渐近线方程为的双曲线的标准方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若是函数的极值点,1为函数的一个零点,求函数上的最小值.

(2)当时,函数轴在内有两个不同的交点,求的取值范围.(其中是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为.

1求数列的通项公式;

2,记数列的前项和.若对 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ ,且f(1)=2.
(1)求m的值;
(2)判断f(x)的奇偶性;
(3)用定义法证明f(x)在区间(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数, ).以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.

(Ⅰ)设为曲线上任意一点,求的取值范围;

(Ⅱ)若直线与曲线交于两点 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗骰子投掷两次分别得到点数ab则直线axby=0与圆(x2)2y22相交的概率为____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在函数)的所有切线中,有且仅有一条切线与直线垂直.

(1)求的值和切线的方程;

(2)设曲线在任一点处的切线倾斜角为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所发现,一种作物的年收获量 (单位: )与它“相近”作物的株数 具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过 ),并分别记录了相近作物的株数为 时,该作物的年收获量的相关数据如下:

(1)求该作物的年收获量 关于它“相近”作物的株数 的线性回归方程;

(2)农科所在如图所示的直角梯形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,图中

每个小正方形的边长均为 ,若从直角梯形地块的边界和内部各随机选取一株该作物,求这两株作物 “相

近”且年产量仅相差 的概率.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估

计分别为, ,

查看答案和解析>>

同步练习册答案