精英家教网 > 高中数学 > 题目详情
19.已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$($\overrightarrow{a}$,$\overrightarrow{b}$为非零向量),且∠AOB=90°,则|$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$|=$\sqrt{2}$.

分析 由题意得到$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$=(1,0)+(0,1)=(1,1),再求出模即可.

解答 解:$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$($\overrightarrow{a}$,$\overrightarrow{b}$为非零向量),且∠AOB=90°,
|$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$|=|(1,0)+(0,1)|=|(1,1)|=$\sqrt{2}$,
故答案为:$\sqrt{2}$.

点评 本题考查了单位向量和向量的模的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.求过M(4,2)且与圆x2+y2-8x+6y=0相切的直线方程?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若直线3x+2y-2m-1=0与直线2x+4y-m=0的交点在第四象限,则实数m的取值范围是.
A.(-∞,-2)B.(-2,+∞)C.(-∞,-$\frac{2}{3}$)D.(-$\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=(log${\;}_{\frac{1}{2}}$x)2-4log${\;}_{\frac{1}{2}}$x在区间[$\frac{1}{8}$,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一个对称中心是($\frac{π}{8}$,0).
(1)求φ的值;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合${A}=\left\{{x\left|{\frac{x}{x-1}≥0}\right.}\right\}$,集合 B={x|lnx≥0},则“x∈A”是“x∈B”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC中,D是BC的中点,若AB=4,AC=1,∠BAC=60°,则AD=$\frac{\sqrt{21}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设奇函数f(x)在(0,+∞)上为单调递增函数,且f(2)=0,则不等式$\frac{{f({-x})-f(x)}}{x}≥0$的解集(  )
A.[-2,0]∪[2,+∞)B.(-∞,-2]∪(0,2]C.(-∞,-2]∪[2,+∞)D.[-2,0)∪(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x=$\frac{π}{6}$是函数f(x)=(asinx+cosx)cosx-$\frac{1}{2}$图象的一条对称轴.
(1)求函数f(x)的单调增区间;
(2)作出函数f(x)在x∈[0,π]上的图象简图.

查看答案和解析>>

同步练习册答案