精英家教网 > 高中数学 > 题目详情
5.双曲线T:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为10,焦点到渐近线的距离为3,则它的实轴长等于8.

分析 求出半焦距,求出虚半轴的长,然后求解即可.

解答 解:双曲线T:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为10,可得c=5,
焦点到渐近线的距离为3,可得b=3,
它的实轴长:2a=2$\sqrt{{c}^{2}-{b}^{2}}$=8.
故答案为:8.

点评 本题考查双曲线的简单性质的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设f(x)=log${\;}_{\frac{1}{2}}$x-ax>0在(0,$\frac{1}{4}$)上恒成立,a>0且a≠1,求a范围(  )
A.(1,+∞)B.(0,1)C.(0,1)∪(1,16]D.(1,16]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}中,a1=$\frac{2}{3}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$
(1)求证:数列{$\frac{1}{{a}_{n}}-1$}是等比数列
(2)记bn=$\frac{{a}_{n}{a}_{n+1}}{{2}^{n+1}}$,数列{bn}前n项的和为Sn,求证:Sn<$\frac{1}{3}$
(3)是否存在成等差数列且互不相等的三个正整数m、s、r,使得am-1、as-1、ar-1成等比数列,若存在,求出所有满足条件的正整数m、s、r,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知x>0,求证:x+$\frac{1}{x}$+$\frac{1}{x+\frac{1}{x}}$≥$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=(x+a)(x-b),若a,b∈{-2,-1,0,1,2},则f(x)为偶函数的概率为(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={(x,y)|y=2x+1},B={x|y=x-1},则A∩B=(  )
A.{-2}B.{(-2,-3)}C.D.{-3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F(-c,0)关于直线bx+cy=0的对称点P在椭圆上,则椭圆的离心率是(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆C的方程为(x-1)2+(y-1)2=4,过直线x-y-6=0上的一点M作圆C的切线,切点为N,则|MN|的最小值为(  )
A.2$\sqrt{3}$B.$\sqrt{14}$C.4D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{{a}^{x},}&{0≤x≤1}\\{\frac{x}{a}+1,}&{-1≤x<0}\end{array}\right.$(a>0且a≠1).若f(x)的最大值与最小值之差为$\frac{3}{2}$,则a的取值为2或$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案