精英家教网 > 高中数学 > 题目详情
12.在边长为1的等边△ABC中,O为边AC的中点,BO为边AC上的中线,$\overrightarrow{BG}$=2$\overrightarrow{GO}$,设$\overrightarrow{CD}$∥$\overrightarrow{AG}$,若$\overrightarrow{AD}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$(λ∈R),则|$\overrightarrow{AD}$|=$\sqrt{7}$.

分析 根据题意得出G是△ABC的重心,用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示出向量$\overrightarrow{AG}$,用$\overrightarrow{AG}$表示出$\overrightarrow{CD}$,写出$\overrightarrow{AD}$的表达式,利用向量相等列出方程组求出λ的值,代入$\overrightarrow{AD}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$,计算得答案.

解答 解:由已知得G是三角形的重心,因此$\overrightarrow{AG}=\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})$,
∵$\overrightarrow{CD}$∥$\overrightarrow{AG}$,设$\overrightarrow{CD}=k\overrightarrow{AG}$,
∴$\overrightarrow{CD}=\frac{k}{3}(\overrightarrow{AB}+\overrightarrow{AC})$.
∴$\overrightarrow{AD}=\overrightarrow{AC}+\overrightarrow{CD}$=$\frac{k}{3}\overrightarrow{AB}+(\frac{k}{3}+1)\overrightarrow{AC}$.
∵$\overrightarrow{AD}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$,
∴$\left\{\begin{array}{l}{\frac{k}{3}=1}\\{λ=\frac{k}{3}+1}\end{array}\right.$,即λ=2.
∴$\overrightarrow{AD}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$,
∴${\overrightarrow{AD}}^{2}=(\overrightarrow{AB}+2\overrightarrow{AC})^{2}$=$1+4+4×1×1×\frac{1}{2}=7$.
∴|$\overrightarrow{AD}$|=$\sqrt{7}$.
故答案为:$\sqrt{7}$.

点评 本题考查了向量在几何中的应用问题,也考查平面向量的基本定理,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{{b}^{2}}$=1的焦点为F1(-5,0),F2(5,0),则双曲线的渐近线方程为(  )
A.3x±4y=0B.4x±3y=0C.4x±5y=0D.5x±4y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)为定义在R上的可导函数,且为偶函数,x≠0时,xf′(x)>0恒成立,则(  )
A.f(1)<f(-2)<f(3)B.f(-2)<f(1)<f(3)C.f(3)<f(-2)<f(1)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在Rt△AOB中,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,|$\overrightarrow{OA}$|=$\sqrt{5}$,|$\overrightarrow{OB}$|=2$\sqrt{5}$,AB边上的高线为OD,点E位于线段OD上,若$\overrightarrow{OE}$•$\overrightarrow{EA}$=$\frac{3}{4}$,则向量$\overrightarrow{EA}$在向量$\overrightarrow{OD}$上的投影为(  )
A.$\frac{3}{2}$B.1C.$\frac{1}{2}$或$\frac{3}{2}$D.1或$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设复数z为纯虚数,a∈R,且$z+a=\frac{10}{1-3i}$,则a的值为(  )
A.3B.-3C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.弹簧所受的压缩力F(单位:牛)与缩短的距离L(单位:米)按胡克定律F=KL计算,如果100N的力能使弹簧压缩10cm,那么把弹簧从平衡位置压缩到20cm(在弹性限度内),所做的功为(  )
A.20( J)B.200( J)C.10( J)D.5( J)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“?”处的数字是(  )
A.6B.3C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a<0,b>0,则使不等式|a-|x-1||+||x-1|-b|≥|a-b|等号成立的条件是(  )
A.-b≤x≤bB.1-b≤x≤1+bC.x≥1+bD.x≤1-b或x≥1+b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.△ABC的内角A,B,C的对边分别为a,b,c,已知b=1,B=$\frac{π}{6}$,C=$\frac{π}{4}$,则△ABC的面积为(  )
A.$\frac{{\sqrt{3}+1}}{4}$B.+1C.$\frac{{\sqrt{3}-1}}{4}$D.$\sqrt{3}$-1

查看答案和解析>>

同步练习册答案