分析 根据题意得出G是△ABC的重心,用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示出向量$\overrightarrow{AG}$,用$\overrightarrow{AG}$表示出$\overrightarrow{CD}$,写出$\overrightarrow{AD}$的表达式,利用向量相等列出方程组求出λ的值,代入$\overrightarrow{AD}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$,计算得答案.
解答 解:由已知得G是三角形的重心,因此$\overrightarrow{AG}=\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})$,
∵$\overrightarrow{CD}$∥$\overrightarrow{AG}$,设$\overrightarrow{CD}=k\overrightarrow{AG}$,
∴$\overrightarrow{CD}=\frac{k}{3}(\overrightarrow{AB}+\overrightarrow{AC})$.
∴$\overrightarrow{AD}=\overrightarrow{AC}+\overrightarrow{CD}$=$\frac{k}{3}\overrightarrow{AB}+(\frac{k}{3}+1)\overrightarrow{AC}$.
∵$\overrightarrow{AD}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$,
∴$\left\{\begin{array}{l}{\frac{k}{3}=1}\\{λ=\frac{k}{3}+1}\end{array}\right.$,即λ=2.
∴$\overrightarrow{AD}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$,
∴${\overrightarrow{AD}}^{2}=(\overrightarrow{AB}+2\overrightarrow{AC})^{2}$=$1+4+4×1×1×\frac{1}{2}=7$.
∴|$\overrightarrow{AD}$|=$\sqrt{7}$.
故答案为:$\sqrt{7}$.
点评 本题考查了向量在几何中的应用问题,也考查平面向量的基本定理,是中档题.
科目:高中数学 来源: 题型:选择题
A. | 3x±4y=0 | B. | 4x±3y=0 | C. | 4x±5y=0 | D. | 5x±4y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(1)<f(-2)<f(3) | B. | f(-2)<f(1)<f(3) | C. | f(3)<f(-2)<f(1) | D. | f(3)<f(1)<f(-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{2}$ | B. | 1 | C. | $\frac{1}{2}$或$\frac{3}{2}$ | D. | 1或$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 20( J) | B. | 200( J) | C. | 10( J) | D. | 5( J) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -b≤x≤b | B. | 1-b≤x≤1+b | C. | x≥1+b | D. | x≤1-b或x≥1+b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{3}+1}}{4}$ | B. | +1 | C. | $\frac{{\sqrt{3}-1}}{4}$ | D. | $\sqrt{3}$-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com