【题目】(1)当时,求证:;
(2)求的单调区间;
(3)设数列的通项,证明.
【答案】(1)见解析;(2)见解析;(3)见解析.
【解析】
(1)构造函数,对函数求导得到函数的单调性,进而求得函数的最值,即可得证;(2)直接对函数求导得到,分,,,,几种情况得到函数的单调性;(3)由题意知, 由(1)知当时, 当时即,令则,同理:令则,同理:令则将式子累加得结果.
(1)的定义域为,恒成立;所以函数在上单调递减,得时即:
(2)由题可得,且.
当时,当有,所以单调递减,
当有,所以单调递增,
当时,当有,所以单调递增,
当有,所以单调递减,
当时,当有,所以单调递增,
当时,当有,所以单调递增,
当有,所以单调递减,
当时,当有,所以单调递减,
当有,所以单调递增,
(3)由题意知.
由(1)知当时
当时即
令则,
同理:令则.
同理:令则
以上各式两边分别相加可得:
即
所以:
科目:高中数学 来源: 题型:
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过的有40人,不超过的有15人;在45名女性驾驶员中,平均车速超过的有20人,不超过的有25人.
(1)完成下面的列联表,并判断是否有%的把握认为平均车速超过的人与性别有关.
平均车速超过人数 | 平均车速不超过人数 | 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 |
(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.
参考公式与数据:
,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(, 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;
(1)求曲线的极坐标方程;
(2)在曲线上取两点, 与原点构成,且满足,求面积的最大值.
【答案】(1);(2)
【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为,
,消去参数可知曲线是圆心为,半径为的圆,由直线与曲线相切,可得: ;则曲线C的方程为, 再次利用极坐标与直角坐标的互化公式可得
可得曲线C的极坐标方程.
(2)由(1)不妨设M(),,(),
,
,
由此可求面积的最大值.
试题解析:(1)由题意可知直线的直角坐标方程为,
曲线是圆心为,半径为的圆,直线与曲线相切,可得: ;可知曲线C的方程为,
所以曲线C的极坐标方程为,
即.
(2)由(1)不妨设M(),,(),
,
,
当 时, ,
所以△MON面积的最大值为.
【题型】解答题
【结束】
23
【题目】已知函数的定义域为;
(1)求实数的取值范围;
(2)设实数为的最大值,若实数, , 满足,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣π<φ<0),其导函数f'(x)的部分图象如图所示,则函数f(x)的解析式为( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com