精英家教网 > 高中数学 > 题目详情

【题目】(1)当时,求证:

(2)求的单调区间;

(3)设数列的通项,证明

【答案】(1)见解析;(2)见解析;(3)见解析.

【解析】

(1)构造函数,对函数求导得到函数的单调性,进而求得函数的最值,即可得证;(2)直接对函数求导得到,分几种情况得到函数的单调性;(3)由题意知, 由(1)知当,,,同理:,同理:将式子累加得结果.

(1)的定义域为恒成立;所以函数上单调递减,得即:

(2)由题可得,且.

时,当,所以单调递减,

,所以单调递增,

时,当,所以单调递增,

,所以单调递减,

时,当,所以单调递增,

时,当,所以单调递增,

,所以单调递减,

时,当,所以单调递减,

,所以单调递增,

(3)由题意知.

由(1)知当

同理:令.

同理:令

以上各式两边分别相加可得:

所以:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面是直角梯形,平面.

)设为线段的中点,求证://平面

)若,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过的有40人,不超过的有15人;在45名女性驾驶员中,平均车速超过的有20人,不超过的有25人.

(1)完成下面的列联表,并判断是否有%的把握认为平均车速超过的人与性别有关.

平均车速超过人数

平均车速不超过人数

合计

男性驾驶员人数

女性驾驶员人数

合计

(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.

参考公式与数据:

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点,且圆心C在直线.

1)求C圆的方程;

2)直线l过圆C外一点,且直线l与圆C只有一个公共点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1CAB=3BC=5.

)求证:AA1平面ABC

)求二面角A1-BC1-B1的余弦值;

)证明:在线段BC1存在点D,使得ADA1B,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

【答案】(1);(2)

【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为

,消去参数可知曲线是圆心为,半径为的圆,由直线与曲线相切,可得: ;则曲线C的方程为, 再次利用极坐标与直角坐标的互化公式可得

可得曲线C的极坐标方程.

(2)由(1)不妨设M(),,(),

由此可求面积的最大值.

试题解析:(1)由题意可知直线的直角坐标方程为

曲线是圆心为,半径为的圆,直线与曲线相切,可得: ;可知曲线C的方程为

所以曲线C的极坐标方程为

.

(2)由(1)不妨设M(),,(),

时,

所以△MON面积的最大值为.

型】解答
束】
23

【题目】已知函数的定义域为

(1)求实数的取值范围;

(2)设实数的最大值,若实数 满足,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面ABCDEPB的中点.

1)证明:平面平面PBC

2)求直线PD与平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣π<φ<0),其导函数f'(x)的部分图象如图所示,则函数f(x)的解析式为(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面是边长为3的正方形,平面与平面所成的角为.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案