精英家教网 > 高中数学 > 题目详情
(2011•盐城二模)选修4-2  矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
分析:根据特征多项式的一个零点为3,可得x=1,再回代到方程f(λ)=0即可解出另一个特征值为λ2=-1.最后利用求特征向量的一般步骤,可求出其对应的一个特征向量.
解答:解:矩阵M的特征多项式为
f(λ)=
.
λ-1-2
-2λ-x
.
=(λ-1)(λ-x)-4.
∵λ1=3方程f(λ)=0的一根,
∴(3-1)(3-x)-4=0,可得x=1,M=
12
21

∴方程f(λ)=0即(λ-1)(λ-1)-4=0,λ2-2λ-3=0
可得另一个特征值为:λ2=-1,
设λ2=-1对应的一个特征向量为α=
x 
y 

则由λ2α=Mα,得
-2x-2y=0
-2x-2y=0

得x=-y,可令x=1,则y=-1,
所以矩阵M的另一个特征值为-1,对应的一个特征向量为α=
1 
-1 
点评:本题给出含有字母参数的矩阵,在知其一个特征值的情况下求另一个特征值和相应的特征向量,考查了特征值与特征向量的计算的知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•盐城二模)选修4-4:坐标系与参数方程
若两条曲线的极坐标方程分别为ρ=1与ρ=2cos(θ+
π3
),它们相交于A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)已知a,b,c是非零实数,则“a,b,c成等比数列”是“b=
ac
”的
必要不充分
必要不充分
条件(从“充要”、“充分不必要”、“必要不充分”、“既不充分又不必要”中选择一个填空).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)在△ABC中,角A、B、C的所对边的长分别为a、b、c,且a=
5
,b=3,sinC=2sinA.
(Ⅰ)求c的值;
(Ⅱ)求 sin(2A-
π
3
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)已知f(x)=cosx,g(x)=sinx,记Sn=2
2n
k=1
f(
(k-1)π
2n
)
-
1
2n
2n
k=1
g(
(k-n-1)π
2n
)
,Tm=S1+S2+…+Sm,若Tm<11,则m的最大值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)在如图所示的多面体中,已知正三棱柱ABC-A1B1C1的所有棱长均为2,四边形ABCD是菱形.
(Ⅰ)求证:平面ADC1⊥平面BCC1B1
(Ⅱ)求该多面体的体积.

查看答案和解析>>

同步练习册答案