精英家教网 > 高中数学 > 题目详情
13.椭圆C1的中心在坐标原点,两焦点分别为双曲线C2:$\frac{{x}^{2}}{2}$-y2=1的顶点,直x+$\sqrt{2}$y=0与椭圆C1交于A、B两点,且点A的坐标为(-$\sqrt{2}$,1),点P是椭圆C1上异于点A,B的任意一点.
(1)求椭圆C1的标准方程;
(2)求△ABP面积的最大值及此时点P的坐标.

分析 (1)求出椭圆的焦点,结合A(-$\sqrt{2}$,1)在椭圆上,利用椭圆的定义,可得椭圆C1的方程;
(2)由题意求出B的坐标,设出与AB平行的直线方程,与椭圆方程联立,化为关于x的一元二次方程,利用判别式等于0求出椭圆的切线方程,得到P的坐标,求出|AB|,由平行线间的距离公式求出P到直线AB的距离,代入三角形面积公式得答案.

解答 解:(1)双曲线C2:$\frac{{x}^{2}}{2}$-y2=1的顶点为F1(-$\sqrt{2}$,0),F2($\sqrt{2}$,0),
∴椭圆C1的焦点为F1(-$\sqrt{2}$,0),F2($\sqrt{2}$,0),
∵椭圆过A(-$\sqrt{2}$,1),
∴2a=|AF1|+|AF2|=$\sqrt{(-\sqrt{2}+\sqrt{2})^{2}+(1-0)^{2}}$$+\sqrt{(-\sqrt{2}-\sqrt{2})^{2}+(1-0)^{2}}$=4,
∴a=2,
∴b=$\sqrt{4-2}=\sqrt{2}$.
则椭圆C1的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$;
(2)由题意,B($\sqrt{2}$,-1),如图,
设与直线x+$\sqrt{2}$y=0平行的直线方程为$x+\sqrt{2}y+m=0$.
联立$\left\{\begin{array}{l}{x+\sqrt{2}y+m=0}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,消去y得:2x2+2mx+m2-4=0.
由△=4m2-8(m2-4)=0,解得m=$±2\sqrt{2}$.
∴与直线x+$\sqrt{2}$y=0平行且与椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$相切的直线方程为$x+\sqrt{2}y±2\sqrt{2}=0$.
此时切点P的坐标为P($-\sqrt{2},-1$)、P($\sqrt{2},1$).
|AB|=$\sqrt{(-\sqrt{2}-\sqrt{2})^{2}+(1+1)^{2}}=2\sqrt{3}$.
P到直线AB的距离d=$\frac{|2\sqrt{2}|}{\sqrt{3}}=\frac{2\sqrt{6}}{3}$.
∴△ABP面积的最大值S=$\frac{1}{2}×2\sqrt{3}×\frac{2\sqrt{6}}{3}=2\sqrt{2}$.

点评 本题考查椭圆的方程,考查直线与椭圆的位置关系,考查三角形面积的计算,考查学生分析解决问题的能力,有难度

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.经过(-1,2)且与直线x+y-1=0垂直的直线是(  )
A.x-y+1=0B.x-y+3=0C.x+y+1=0D.x+y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=$\left\{\begin{array}{l}{-x,-1≤x<0}\\{{x}^{2},0≤x<1}\\{x,1≤x≤2}\end{array}\right.$
(1)求f($\frac{3}{2}$),f[f (-$\frac{2}{3}$)]值;
(2)若f (x)=$\frac{1}{2}$,求x值;
(3)作出该函数简图(画在如图坐标系内);
(4)求函数的单调增区间与值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x-3|-|x+1|,命题p:关于x的不等式f(x)>a对x∈R恒成立;命题q:函数y=x2-ax+4在区间[5,+∞)上单调递增.
(1)解不等式f(x)≤0;
(2)若命题“p或q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=${4}^{x-\frac{1}{2}}$-m•2x-1(0≤x≤2).
(1)若m=2,求函数f(x)的最大值和最小值;
(2)若f(x)>0对任意x∈[0,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在多面体ABCDEF中,底面ABCD为菱形,∠BAD=60°,△ADE为等边三角形,且平面ADE⊥平面ABCD,EF $\stackrel{∥}{=}$$\frac{1}{2}$AB,点G为CD的中点.
(Ⅰ)证明:BD⊥EG;
(Ⅱ)求直线DE与平面BCF所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的左、上顶点分别为A、B,椭圆C的左焦点为F,且△ABF的面积为$\frac{2-\sqrt{3}}{2}$,则椭圆C的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,某房地产公司要在一块矩形宽阔地面上开发物业,阴影部分是不能开发的古建筑群,且要求用在一条直线上的栏栅进行隔离,古建筑群的边界为曲线y=1-$\frac{4}{3}$x2的一部分,栏栅与矩形区域边界交于点M,N.则△MON面积的最小值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,底面ABCD为菱形,且PA=PD=DA=2,∠BAD=60°.设AD、PB、PC中点分别为E、F、G.
(Ⅰ)求证:PB⊥AD;
(Ⅱ)求证:EF∥平面PCD;
(Ⅲ)若PB=$\sqrt{6}$,求四面体G-BCD的体积.

查看答案和解析>>

同步练习册答案