分析 (1)求出椭圆的焦点,结合A(-$\sqrt{2}$,1)在椭圆上,利用椭圆的定义,可得椭圆C1的方程;
(2)由题意求出B的坐标,设出与AB平行的直线方程,与椭圆方程联立,化为关于x的一元二次方程,利用判别式等于0求出椭圆的切线方程,得到P的坐标,求出|AB|,由平行线间的距离公式求出P到直线AB的距离,代入三角形面积公式得答案.
解答 解:(1)双曲线C2:$\frac{{x}^{2}}{2}$-y2=1的顶点为F1(-$\sqrt{2}$,0),F2($\sqrt{2}$,0),
∴椭圆C1的焦点为F1(-$\sqrt{2}$,0),F2($\sqrt{2}$,0),
∵椭圆过A(-$\sqrt{2}$,1),
∴2a=|AF1|+|AF2|=$\sqrt{(-\sqrt{2}+\sqrt{2})^{2}+(1-0)^{2}}$$+\sqrt{(-\sqrt{2}-\sqrt{2})^{2}+(1-0)^{2}}$=4,
∴a=2,
∴b=$\sqrt{4-2}=\sqrt{2}$.
则椭圆C1的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$;
(2)由题意,B($\sqrt{2}$,-1),如图,
设与直线x+$\sqrt{2}$y=0平行的直线方程为$x+\sqrt{2}y+m=0$.
联立$\left\{\begin{array}{l}{x+\sqrt{2}y+m=0}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,消去y得:2x2+2mx+m2-4=0.
由△=4m2-8(m2-4)=0,解得m=$±2\sqrt{2}$.
∴与直线x+$\sqrt{2}$y=0平行且与椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$相切的直线方程为$x+\sqrt{2}y±2\sqrt{2}=0$.
此时切点P的坐标为P($-\sqrt{2},-1$)、P($\sqrt{2},1$).
|AB|=$\sqrt{(-\sqrt{2}-\sqrt{2})^{2}+(1+1)^{2}}=2\sqrt{3}$.
P到直线AB的距离d=$\frac{|2\sqrt{2}|}{\sqrt{3}}=\frac{2\sqrt{6}}{3}$.
∴△ABP面积的最大值S=$\frac{1}{2}×2\sqrt{3}×\frac{2\sqrt{6}}{3}=2\sqrt{2}$.
点评 本题考查椭圆的方程,考查直线与椭圆的位置关系,考查三角形面积的计算,考查学生分析解决问题的能力,有难度
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com