精英家教网 > 高中数学 > 题目详情
若复数z=
2i
1-i
,则z的模为
 
考点:复数求模
专题:数系的扩充和复数
分析:直接利用复数的模的求法求解即可.
解答: 解:复数z=
2i
1-i

∴|z|=|
2i
1-i
|
=
|2i|
|1-i|
=
2
2
=
2

故答案为:
2
点评:本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数中,在区间(0,2)上是增函数的是(  )
A、y=
x
B、y=(
1
3
x
C、y=log
1
2
x
D、y=-x2+4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(π-α)=
4
5
,α∈(0,
π
2
)

(1)求sin2α的值;
(2)求函数f(x)=
5
3
cosαsin2x-cos2x的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值
(1)(-0.1)0+
32
×2 
2
3
+(
1
4
 -
1
2

(2)log3
27
+lg25+lg4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三内角A、B、C满足条件
sin2A-(sinB-sinC)2
sinBsinC
=1,则角A等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的首项及公差均是正整数,前n项和为Sn,且a1>1,a4>6,S3≤12则a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算log36-log32+4 
1
2
-3 log34的结果为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
1-x
ax
+lnx,(a≠0)
(1)若函数f(x)在[1,+∞)上为增函数,求a的取值范围;
(2)当a=1时,求f(x)在区间(
1
2
,2)
上的值域;
(3)当a=1时,问:是否存在正整数M,使得当自然数n≥M时,恒有lnn>
1
2
+
1
3
+
1
4
+…+
1
n
成立?若存在,求出M的最小值,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆C:
y2
9
+
x2
4
=1
上一动点P(x0,y0 ),x0y0≠0,引圆O:x2+y2=4的两条切线PA、PB,A、B为切点,
(1)如果P点坐标为(-1,
3
3
2
)
,求直线AB的方程;
(2)两条切线PA、PB是否可能互相垂直?若能垂直,求出点P的坐标;若不可能垂直,请说明理由.

查看答案和解析>>

同步练习册答案