精英家教网 > 高中数学 > 题目详情

若直线数学公式图象的切线,则a=________.

0或-
分析:先求出函数的导函数,然后根据直线图象的切线,根据导数与切线斜率的关系建立等式,求出切点坐标然后代入直线方程,求出a的值.
解答:∵直线图象的切线
∴f'(x)=x2-x+1=1 解得x=0或1
∴函数f(x)的切点坐标为(0,0),(1,
直线y=x+a过切点,则a=0或-
故答案为:0或-
点评:本题主要考查了利用导数研究曲线上某点切线方程,关键利用导数与切线斜率的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线y=x+a是函数f(x)=
1
3
x3-
1
2
x2+x
图象的切线,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x1,y1),Q(x2,y2)(x1≠x2)是函数f(x)=x3+ax2+bx+c的图象上的两点,若对于任意实数x1,x2,当x1+x2=0时,以P,Q为切点分别作函数f(x)的图象的切线,则两切线必平行,并且当x=1时函数f(x)取得极小值1.
(1)求函数f(x)的解析式;
(2)若M(t,g(t))是函数g(x)=f(x)+3x-3(1≤x≤6)的图象上的一点,过M作函数g(x)图象的切线,切线与x轴和直线x=6分别交于A,B两点,直线x=6与x轴交于C点,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省荆州中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知点P(x1,y1),Q(x2,y2)(x1≠x2)是函数f(x)=x3+ax2+bx+c的图象上的两点,若对于任意实数x1,x2,当x1+x2=0时,以P,Q为切点分别作函数f(x)的图象的切线,则两切线必平行,并且当x=1时函数f(x)取得极小值1.
(1)求函数f(x)的解析式;
(2)若M(t,g(t))是函数g(x)=f(x)+3x-3(1≤x≤6)的图象上的一点,过M作函数g(x)图象的切线,切线与x轴和直线x=6分别交于A,B两点,直线x=6与x轴交于C点,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省绍兴市诸暨中学高三(上)期末数学试卷(文科)(解析版) 题型:填空题

若直线图象的切线,则a=   

查看答案和解析>>

同步练习册答案