精英家教网 > 高中数学 > 题目详情
7.若函数$f(x)=\frac{1}{a}{x^2}-2ax+5$在区间(-∞,1)上单调递增,在区间(1,+∞)上单调递减,则a=(  )
A.1B.-1C.±1D.不存在

分析 由题意得到f(x)的对称轴为x=1,且a<0,再根据对称轴公式代值求出a的值.

解答 解:∵函数$f(x)=\frac{1}{a}{x^2}-2ax+5$在区间(-∞,1)上单调递增,在区间(1,+∞)上单调递减,
∴函数f(x)的对称轴为x=1=$\frac{2a}{2•\frac{1}{a}}$,且a<0,
解的a=-1,
故选:B.

点评 本题考查二次函数图象特征和单调性,以及不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1点的中点,且AA1=AC=BC=$\frac{\sqrt{2}}{2}$AB.
(1)证明:BC1∥平面A1CD;
(2)求直线CE与平面A1CD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在复平面内,复数z1和z2对应的点分别是A和B,则$\frac{{z}_{2}}{{z}_{1}}$=(  )
A.$\frac{1}{5}$+$\frac{2}{5}$iB.$\frac{2}{5}$+$\frac{1}{5}$iC.-$\frac{1}{5}$-$\frac{2}{5}$iD.-$\frac{2}{5}$-$\frac{1}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆E的中心在坐标原点O,焦点在坐标轴上,且经过M(2,1),N(2$\sqrt{2}$,0)两点.
(1)求椭圆E的方程;
(2)若平行于OM的直线l交椭圆E于两个不同点A,B,直线MA与MB的斜率分别为k1,k2,试问:k1+k2是否为定值?若是,求出此定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知关于x的x2-2ax+a+2=0的两个实数根是α,β,且有1<α<2<β<3,则实数a的取值范围是$({2,\frac{11}{5}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知全集U=R,A={x|-4≤x≤2},B={x|-1<x≤3},P={x|x≤0,或x≥$\frac{5}{2}$},Q={x|a-2<x<a+2}.
(1)求A∩B;
(2)求(∁UB)∪P;
(3)若A∩B⊆Q,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=Asin(ωx+φ)(ω>0,-π<φ<0)的部分图象如图所示,则下列判断错误的是(  )
A.函数f(x)的最小正周期为2
B.函数f(x)的值域为[一4,4]
C.函数f(x)的图象关于( $\frac{10}{3}$,0)对称
D.函数f(x)的图象向左平移 $\frac{π}{3}$个单位后得到y=Asinωx的图象

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.用导数的定义,求函数y=$\frac{1}{{x}^{2}}$+2在x=1处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.零向量的方向规定为(  )
A.向左B.向右C.坐标轴方向D.不确定

查看答案和解析>>

同步练习册答案