【题目】(本小题满分12分)在△中,角所对的边分别为,已知,,.
(1)求的值;
(2)求的值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin
(A>0,ω>0)的最小值为-2,其图象相邻两个对称中心之间的距离为.
(1)求f(x)的最小正周期及对称轴方程;
(2)若f,求f的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为A,右焦点为F,过点F的直线交椭圆于B,C两点.
(1)求该椭圆的离心率;
(2)设直线AB和AC分别与直线x=4交于点M,N,问:x轴上是否存在定点P使得MP⊥NP?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,平面PAD 平面ABCD,PA PD ,PA=PD,AB AD,AB=1,AD=2,AC=CD= ,
(1)求证:PD 平面PAB;
(2)求直线PB与平面PCD所成角的正弦值;
(3)在棱PA上是否存在点M,使得BMll平面PCD?若存在,求 的值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}为等差数列,且a3=-6,a6=0.
(1)求{an}的通项公式;
(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,-2),椭圆E: (a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,四边形是直角梯形, , , 底面, , , 是的中点.
(1)求证:平面平面;
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com