精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(1+2x)-2x+ax2
(1)若a=1,求f(x)的单调区间;
(2)若函数f(x)存在两个极值点,且都小于1,求a的取值范围;
(3)若对f(x)定义域内的任意x,不等式f(x)≤0恒成立,求a的取值范围.
分析:(1)求导函数,利用导数的正负,可得f(x)的单调区间;
(2)求导函数,利用函数f(x)存在两个极值点,且都小于1,结合函数的定义域,即可求a的取值范围;
(3)令t=2x,则原不等式等价于ln(1+t)-t≤-
1
4
at2
,分类讨论,分离参数,可得结论.
解答:解:(1)若a=1时,f(x)=ln(1+2x)-2x+x2,∴f′(x)=
2x(2x-1)
1+2x
x>-
1
2
).
x∈(-
1
2
,0)
(
1
2
,+∞)
,f′(x)>0,则f(x)的单调递增区间为(-
1
2
,0)
(
1
2
,+∞)

x∈(0,
1
2
)
,f′(x)<0,则f(x)的单调递减区间为(0,
1
2
)

(2)f′(x)=2•
2ax2-(2-a)x
1+2x
x>-
1
2
).
由函数f(x)存在两个极值点,可知a≠2
∵两个极值点都小于1,结合函数的定义域有-
1
2
1
a
-
1
2
<1
,解得a>
2
3

综上,a>
2
3
且a≠2;
(3)令t=2x,则原不等式等价于ln(1+t)-t≤-
1
4
at2

t=0,满足题设;
t≠0,有
ln(1+t)-t
t2
≤-
a
4

∵ln(1+t)-t<0恒成立
ln(1+t)-t
t2
<0

∴0≤-
a
4

∴a≤0.
点评:本题考查导数知识的运用,考查函数的单调性与极值,考查学生分析解决问题的能力,有难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案