精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=sinx,f(x)的导数是(  )
A.偶函数B.奇函数C.增函数D.减函数

分析 先求导,再根据函数的奇偶性的定义判断即可.

解答 解:∵f′(x)=cosx,
∴f′(-x)=cos(-x)=cosx=f′(x),
∴f′(x)为偶函数,
故选:A.

点评 本题考查了导数的基本公式,和函数的奇偶性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sinx-$\frac{1}{{2{x^2}}}$,若$\frac{π}{3}<a<b<\frac{5π}{6}$,则(  )
A.f(a)>f(b)B.f(a)<f(b)C.f(a)=f(b)D.f(a)f(b)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.袋中装着分别标有数字1,2,3,4,5的5个形状相同的小球.
(1)从袋中任取2个小球,求两个小球所标数字之和为3的倍数的概率;
(2)从袋中有放回的取出2个小球,记第一次取出的小球所标数字为x,第二次为y,求点(x,y)满足(x-1)2+y2≤9的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.甲、乙两所学校的代表队参加汉字听写大赛.在比赛第二阶段,两队各剩最后两名队员上场.甲队两名队员通过第二阶段比赛的概率分别
是0.6和0.8,乙队两名队员通过第二阶段比赛的概率都是0.7.通过了第二阶段比赛的队员,才能进入第三阶段比赛(若某队两个队员都没有通过第二阶段的比赛,则该队进入第三阶段比赛人数为0).所有参赛队员比赛互不影响,其过程、结果都是彼此独立的.
(Ⅰ)求第三阶段比赛,甲、乙两队人数相等的概率;
(Ⅱ)X表示第三阶段比赛甲、乙两队的人数差的绝对值,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知锐角α终边经过点P(cos50°,1+sin50°).则锐角α等于(  )
A.10°B.20°C.70°D.80°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.复数z1,z2互为共轭复数,若z1=1-2i,则z1-z2=(  )
A.-4iB.4iC.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知命题p:对于a∈[-2,$\sqrt{5}$],不等式|m-1|≤$\sqrt{{a}^{2}+4}$恒成立,命题q:不等式x2+mx+m<0有解,若p∨q为真,且p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=($\sqrt{2}$cosωx,1),$\overrightarrow{b}$=(2sin(ωx+$\frac{π}{4}$),-1)(其中$\frac{1}{4}$≤ω≤$\frac{3}{2}$),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,且f(x)图象的一条对称轴为x=$\frac{5π}{8}$.
(1)求f($\frac{3}{4}$π)的值;
(2)若f($\frac{a}{2}-\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,f($\frac{β}{2}$-$\frac{π}{8}$)=$\frac{2\sqrt{3}}{3}$,且$α,β∈(-\frac{π}{2},\frac{π}{2})$,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{x-2y+2≥0}\\{mx-y≤0}\end{array}\right.$,若Z=2x-y的最大值为2,则实数m等于1.

查看答案和解析>>

同步练习册答案