【题目】已知函数.
(1)当时,讨论的单调性;
(2)设,若关于的不等式在上有解,求的取值范围.
【答案】(1)见解析;(2) .
【解析】试题分析: (1)对函数两次求导,判断出函数的单调性;(2)将函数g(x)的解析式代入关于x的不等式,化简并构造新函数,对新函数求导,讨论参数的范围判断出单调性求出最值,代入不等式即可.
试题解析:
(1)由题意知, ,
令,当时, 恒成立,
∴当时, ;当时, ,
∴函数在上单调递增,在上单调递减.
(2)∵,∴,
由题意知,存在,使得成立.
即存在,使得成立,
令,
∴.
①时, ,则,∴函数在上单调递减,
∴成立,解得,∴;
②当时,令,解得;令,解得,
∴函数在上单调递增,在上单调递减,
又,∴,解得,∴无解;
③当时, ,则,∴函数在上单调递增,
∴,不符合题意,舍去;
综上所述, 的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知四棱台的上下底面分别是边长为2和4的正方形, = 4且 ⊥底面,点为的中点.
(Ⅰ)求证: 面 ;
(Ⅱ)在边上找一点,使∥面,
并求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数的图象向左平移个单位长度,再向上平移1个单位长度,得到函数的图象,则函数具有性质__________.(填入所有正确性质的序号)
①最大值为,图象关于直线对称;
②图象关于轴对称;
③最小正周期为;
④图象关于点对称;
⑤在上单调递减
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnxx2﹣ax+1.
(1)设g(x)=f′(x),求g(x)的单调区间;
(2)若f(x)有两个极值点x1,x2,求证:x1+x2>2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】王老师的班上有四个体育健将甲、乙、丙、丁,他们都特别擅长短跑,在某次运动会上,他们四人要组成一个米接力队,王老师要安排他们四个人的出场顺序,以下是他们四人的对话:
甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;
丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;
王老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求, 据此我们可以断定,在王老师安排的出场顺序中,跑第三棒的人是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海水养殖场使用网箱养殖的方法,收获时随机抽取了 100个网箱,测量各箱水产品的产量(单位:),其频率分布直方图如图:
定义箱产量在(单位:)的网箱为“稳产网箱”, 箱产量在区间之外的网箱为“非稳产网箱”.
(1)从该养殖场(该养殖场中的网箱数量是巨大的)中随机抽取3个网箱.将频率视为概率,设其中稳产网箱的个数为,求的分布列与期望;
(2)从样本中随机抽取3个网箱,设其中稳产网箱的个数为,试比较的期望与的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,若已知其在内只取到一个最大值和一个最小值,且当时函数取得最大值为;当,函数取得最小值为.
(1)求出此函数的解析式;
(2)若将函数的图像保持横坐标不变纵坐标变为原来的得到函数,再将函数的图像向左平移个单位得到函数,已知函数的最大值为,求满足条件的的最小值;
(3)是否存在实数,满足不等式?若存在,求出的范围(或值),若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com