精英家教网 > 高中数学 > 题目详情

【题目】将函数f(x)= sin2x﹣ cos2x+1的图象向左平移 个单位,再向下平移1个单位,得到函数y=g(x)的图象,则下列关予函数y=g(x)的说法错误的是(
A.函数y=g(x)的最小正周期为π
B.函数y=g(x)的图象的一条对称轴为直线x=
C. g(x)dx=
D.函数y=g(x)在区间[ ]上单调递减

【答案】D
【解析】解:把f(x)= sin2x﹣ cos2x+1=2sin(2x﹣ )+1的图象向左平移 个单位, 得到函数y=2sin[2(x+ )﹣ ]+1=2sin(2x+ )+1的图象,
再向下平移1个单位,得到函数y=g(x)=2sin(2x+ )的图象,
对于A,由于T= ,故正确;
对于B,由2x+ =kπ+ ,k∈Z,解得:x= + ,k∈Z,可得:当k=0时,y=g(x)的图象的一条对称轴为直线x= ,故正确;
对于C, g(x)dx= 2sin(2x+ )dx=﹣cos(2x+ )| =﹣(cos ﹣cos )= ,故正确;
对于D,由2kπ+ ≤2x+ ≤2kπ+ ,k∈Z,解得:kπ+ ≤x≤kπ+ ,k∈Z,可得函数y=g(x)在区间[ ]上单调递减,故错误.
故选:D.
利用两角差的正弦函数公式、函数y=Asin(ωx+φ)的图象变换规律,可得g(x),利用正弦函数的图象和性质逐一分析各个选项即可得解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用分别表示乌龟和兔子所行的路程,为时间,则与故事情节相吻合的是(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中,若仅存在两个的整数使得,则实数的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,椭圆C的参数方程为 (θ为参数).
(1)以原点为极点,x轴的正半轴为极轴建立极坐标系,求椭圆C的极坐标方程;
(2)设M(x,y)为椭圆C上任意一点,求x+2y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】党的十九大报告指出,建设生态文明是中华民族永续发展的千年大计.而清洁能源的广泛使用将为生态文明建设提供更有力的支撑.沼气作为取之不尽、用之不竭的生物清洁能源,在保护绿水青山方面具有独特功效.通过办沼气带来的农村“厕所革命”,对改善农村人居环境等方面,起到立竿见影的效果.为了积极响应国家推行的“厕所革命”,某农户准备建造一个深为2米,容积为32立方米的长方体沼气池,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,沼气池盖子的造价为3000元,问怎样设计沼气池能使总造价最低?最低总造价是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上的奇函数,且当时,.

1)若,求的解析式;

2)若,不等式恒成立,求实数的取值范围;

3)若的值域为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在R上的函数,对R都有,且当0时,<0,=1.

(1)求的值

(2)求证:为奇函数;

(3)求在[-2,4]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算机在数据处理时使用的是二进制,例如十进制的1、2、3、4在二进制分别表示为1、10、11、100.下面是某同学设计的将二进制数11111化为十进制数的一个流程图,则判断框内应填入的条件是(
A.i>4
B.i≤4
C.i>5
D.i≤5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式的解集为 , 且函数在区间上不是单调函数,则实数m的取值范围为 ( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案