精英家教网 > 高中数学 > 题目详情

【题目】已知函数,( ).

(Ⅰ)若有最值,求实数的取值范围;

(Ⅱ)当时,若存在),使得曲线处的切线互相平行,求证: .

【答案】(Ⅰ);(Ⅱ)证明过程见解析

【解析】试题分析:(Ⅰ)求出原函数的导函数,通分整理后得到,然后根据二次三项式对应方程根的情况分析导函数的符号,从而得到导函数的单调性利用原函数的单调性求得使有最值的实数的取值范围;(Ⅱ)由曲线处的导函数相等得到,由已知得到,结合不等式可证得答案.

试题解析:(Ⅰ)∵,( ),

对应的方程的知,

①当时, 上递增,无最值;

②当时, 的两根均非正,

因此, 上递增,无最值;

③当时, 有一正根

时, 上递减,

时, 上递增.

此时有最小值.

∴实数的范围为

(Ⅱ)证明:依题意:

整理得:

由于 ,且,则有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱台中, 底面,四边形为菱形, .

(Ⅰ)若中点,求证: 平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,( 为常数)

(1)若处的切线方程为为常数),求的值;

(2)设函数的导函数为,若存在唯一的实数,使得同时成立,求实数的取值范围;

(3)令,若函数存在极值,且所有极值之和大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出的普通方程和的直角坐标方程;

2)设点上,点上,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月16日摩拜单车进驻大连市旅顺口区,绿色出行引领时尚,旅顺口区对市民进行“经常使用共享单车与年龄关系”的调查统计,若将单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,抽取一个容量为200的样本,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”。使用次数为5次或不足5次的称为“不常使用单车用户”,已知“经常使用单车用户”有120人,其中是“年轻人”,已知“不常使用单车用户”中有是“年轻人”.

(1)请你根据已知的数据,填写下列列联表:

年轻人

非年轻人

合计

经常使用单车用户

不常使用单车用户

合计

(2)请根据(1)中的列联表,计算值并判断能否有的把握认为经常使用共享单车与年龄有关?

(附:

时,有的把握说事件有关;当时,有的把握说事件有关;当时,认为事件是无关的)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为美化小区环境,某社区针对公民乱扔垃圾的现象进行了罚款处罚,并随机抽取了200人进行调查,得到如下数据:

(1)若乱扔垃圾的人数与罚款金额(单位:元)满足线性回归关系,求回归方程;

(2)由(1)得到的回归方程分析要使乱扔垃圾的人数不超过,罚款金额至少是多少元?

参考公式:两个具有线性关系的变量的一组数据:

其回归方程为,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有( )

A. 15种 B. 20种 C. 48种 D. 60种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次抽样调查中测得样本的6组数据,得到一个变量关于的回归方程模型,其对应的数值如下表:

2

3

4

5

6

7

(1)请用相关系数加以说明之间存在线性相关关系(当时,说明之间具有线性相关关系);

(2)根据(1)的判断结果,建立关于的回归方程并预测当时,对应的值为多少(精确到).

附参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:

,相关系数公式为:.

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的单调区间;

(2)设 是曲线图象上的两个相异的点,若直线的斜率恒成立,求实数的取值范围;

(3)设函数有两个极值点 ,且,若恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案