【题目】如果函数f(x)=ax2+2x+a2﹣3在区间[2,4]上具有单调性,则实数a取值范围是
【答案】
【解析】解:a<0时,函数f(x)=ax2+2x+a2﹣3的图象是开口朝上,且以x= 为对称轴的抛物线,如果函数f(x)=ax2+2x+a2﹣3在区间[2,4]上具有单调性,
则 ≤2,或 ≥4,
解得:a∈
a=0时,f(x)=2x﹣3区间[2,4]上具有单调性,满足条件,
a>0时,函数f(x)=ax2+2x+a2﹣3的图象是开口朝上,且以x= 为对称轴的抛物线,
此时 <2恒成立,故函数f(x)=ax2+2x+a2﹣3在区间[2,4]上具有单调性,
综上所述,a∈ ,
所以答案是:
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直线坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的参数方程为(为参数),曲线的极坐标方程为.
(1)直线的普通方程和曲线的参数方程;
(2)设点在上, 在处的切线与直线垂直,求的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=x3﹣3x2﹣9x+3,若函数g(x)=f(x)﹣m在x∈[﹣2,5]上有3个零点,则m的取值范围为( )
A.(﹣24,8)
B.(﹣24,1]
C.[1,8]
D.[1,8)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)的图象与g(x)=logax(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过(4,2)点.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足条件an+1= .
(1)若a1= ,求a2 , a3 , a4的值.
(2)已知对任意的n∈N+ , 都有an≠1,求证:an+3=an对任意的正整数n都成立;
(3)在(1)的条件下,求a2015 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为3万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)= ,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)甲厂生产多少台新产品时,可使盈利最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究小组为了研究某品牌智能手机在正常使用情况下的电池供电时间,分别从该品牌手机的甲、乙两种型号中各选取部进行测试,其结果如下:
甲种手机供电时间(小时) | ||||||
乙种手机供电时间(小时) |
(1)求甲、乙两种手机供电时间的平均值与方差,并判断哪种手机电池质量好;
(2)为了进一步研究乙种手机的电池性能,从上述部乙种手机中随机抽取部求这两部手机中恰有一部手机的供电时间大于该种手机供电时间平均值的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.
(Ⅰ)若两个球颜色不同,求不同取法的种数;
(Ⅱ)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(ωx+ )(ω>0)的图象与y=2的图象的两相邻交点的距离为π,要得到y=2sinωx的图象,只需把y=f(x)的图象( )
A.向右平移
B.向左平移
C.向左平移
D.向右平移
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com