精英家教网 > 高中数学 > 题目详情
3.如图是一个物体的三视图,根据图中尺寸(单位:cm),它的体积为32+8πcm3

分析 由三视图知该几何体是组合体:上面是圆柱、下面是长方体,由三视图求出几何元素的长度,由柱体的体积公式求出几何体的体积.

解答 解:根据三视图可知几何体是组合体:上面是圆柱、下面是长方体,
且圆柱的底面半径是2cm,母线长是2cm,
长方体的长、宽、高分别为4cm、4cm、2cm,
∴该几何体的体积V=π×22×2+4×4×2
=32+8π(cm3),
故答案为:32+8π.

点评 本题考查由三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1的一个焦点是(-4,0),则其离心率是$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:填空题

已知复数满足,则

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,正方形ABCD的边长为$\sqrt{2}$,且对角线AC的中点为O,E为AD的中点,将△ADC沿对角线AC折起得平面ADC⊥平面ABC.
(Ⅰ)求证:平面EOB⊥平面AOD;
(Ⅱ)求平面EOB与平面BCD所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的偶函数,当x≥0时.f(x)=$\left\{\begin{array}{l}{|{x}^{2}-1|,0≤x≤2}\\{f(x-1),x>2}\end{array}\right.$,若函数g(x)=f(x)-k(x-1)恰有4个不同的零点,则实数k的取值范围是(  )
A.[-$\frac{3}{4}$,-$\frac{3}{5}$)∪($\frac{3}{5}$,$\frac{3}{4}$]B.[-1,-$\frac{3}{4}$)∪($\frac{3}{4}$,1]C.($\frac{3}{5}$,$\frac{3}{4}$]D.[-$\frac{3}{4}$,-$\frac{3}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.多面体PEBCDA的直观图及其主视图、俯视图如图所示,已知PA⊥平面ABCD,则多面体PECBDA的体积是 (  )
A.$\frac{80}{3}$B.80C.48D.$\frac{176}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数 f(x)=ex-1-ex.
(1)求函数f(x)的单调区间.
(2)设a∈R,求函数f(x)在区间[a,a+1]上的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a,b,c∈R,且满足|a-c|<b,给出下列结论,①a+b>c;②b+c>a;③a+c>b;④|a|+|b|>|c|;其中错误的个数(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=3|x|,则f(x)在区间(m-1,2m)上不是单调函数,则实数m的取值范围是(0,1).

查看答案和解析>>

同步练习册答案