精英家教网 > 高中数学 > 题目详情

【题目】已知函数都在处取得最小值.

(1)求的值;

(2)设函数的极值点之和落在区间,求的值.

【答案】(1).

(2).

【解析】分析:(1)先求 ,再求 ,列式可得导函数变化规律,确定单调性,得到最小值取法,即得 ,再根据 处取得最小值得a,最后求的值;(2)导数,再求导函数的导数,根据导函数单调性以及零点存在定理得确定零点个数及其范围,最后确定极值点之和范围,进而得到k的值.

详解:(1),令,则的变化情况如下表:

-

+

极小值

∴当时,函数取得最小值,∴

时,函数是增函数,在没有最小值,当时,

当且仅当,即有最小值

.

(2),设

,∴当单调递减,

单调递增,

由(1)得,∴时,单调递增.

时,单调递减,∴有唯一极大值点

单调递增,

∴在存在唯一实数,使得

时,单调递减,时,单调递增,

∴函数有唯一极小值点

,∴

∴存在自然数,使得函数的所有极值点之和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数 有以下四个命题:

①对于任意的,都有; ②函数是偶函数;

③若为一个非零有理数,则对任意恒成立;

④在图象上存在三个点,使得为等边三角形.其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是美丽的勾股树,它是一个直角三角形分别以它的每一边向外作正方形而得到.图一是第1勾股树,重复图一的作法,得到图二为第2勾股树,以此类推,已知最大的正方形面积为1,则第n勾股树所有正方形的面积的和为(

A. nB. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点的坐标分别为,直线相交于点,且它们的斜率之积是.

(1)求点的轨迹的方程;

(2)直线与曲线相交于两点,若是否存在实数,使得的面积为?若存在,请求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)已知函数

)求函数的单调递增区间;

)证明:当时,

)确定实数的所有可能取值,使得存在,当时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列的前项和,且,则下列结论错误的是

A. B. C. D. 是递减数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,⊥底面ADDCAP=2,AB=1,E为棱PC的中点.

(1)证明:BEDC

(2)F为棱PC上一点满足BFAC求二面角FABP的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数其中PM是非空数集.记f(P)={y|yf(x),xP}f(M)={y|yf(x),xM}

(Ⅰ)若P[03]M=(﹣,﹣1),求f(P)∪f(M);

(Ⅱ)若PM,且f(x)是定义在R上的增函数,求集合PM

(Ⅲ)判断命题PMR,则f(P)∪f(M)R的真假,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】条形码是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符。常见的条形码是“”通用代码,它是由从左到右排列的13个数字(用表示)组成,其中是校验码,用来校验前12个数字代码的正确性.下面的框图是计算第13位校验码的程序框图,框图中符号表示不超过的最大整数(例如).现有一条形码如图(1)所示,其中第6个数被污损, 那么这个被污损数字是( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

同步练习册答案