【题目】已知函数,都在处取得最小值.
(1)求的值;
(2)设函数,的极值点之和落在区间,,求的值.
【答案】(1).
(2).
【解析】分析:(1)先求 ,再求 ,列式可得导函数变化规律,确定单调性,得到最小值取法,即得 ,再根据在 处取得最小值得a,最后求的值;(2)求导数,再求导函数的导数,根据导函数单调性以及零点存在定理得确定零点个数及其范围,最后确定极值点之和范围,进而得到k的值.
详解:(1),令得,则,的变化情况如下表:
- | + | ||
极小值 |
∴当时,函数取得最小值,∴,;
当时,函数是增函数,在没有最小值,当时,,
当且仅当,即,有最小值,
∴.
(2),,设,
∵,∴当时,即单调递减,
当时,即单调递增,
由(1)得,∴时,,单调递增.
时,,单调递减,∴在有唯一极大值点;
∵,,在单调递增,
∴在存在唯一实数,使得,
∴时,,单调递减,时,,单调递增,
∴函数在有唯一极小值点;
∵,∴,,
∵,,
∴存在自然数,使得函数的所有极值点之和.
科目:高中数学 来源: 题型:
【题目】关于函数 有以下四个命题:
①对于任意的,都有; ②函数是偶函数;
③若为一个非零有理数,则对任意恒成立;
④在图象上存在三个点,,,使得为等边三角形.其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图一是第1代“勾股树”,重复图一的作法,得到图二为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n代“勾股树”所有正方形的面积的和为( )
A. nB. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点的坐标分别为,直线相交于点,且它们的斜率之积是.
(1)求点的轨迹的方程;
(2)直线与曲线相交于两点,若是否存在实数,使得的面积为?若存在,请求出的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,⊥底面,⊥,∥,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE⊥DC;
(2)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数其中P,M是非空数集.记f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.
(Ⅰ)若P=[0,3],M=(﹣∞,﹣1),求f(P)∪f(M);
(Ⅱ)若P∩M=,且f(x)是定义在R上的增函数,求集合P,M;
(Ⅲ)判断命题“若P∪M≠R,则f(P)∪f(M)≠R”的真假,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】条形码是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符。常见的条形码是“”通用代码,它是由从左到右排列的13个数字(用表示)组成,其中是校验码,用来校验前12个数字代码的正确性.下面的框图是计算第13位校验码的程序框图,框图中符号表示不超过的最大整数(例如).现有一条形码如图(1)所示,其中第6个数被污损, 那么这个被污损数字是( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com