精英家教网 > 高中数学 > 题目详情
7.已知△ABC的内角A,B,C所对的边分别为a,b,c,且满足bsin(A+B)-$\sqrt{3}$ccosB=0.
(1)求B;
(2)若b=$\sqrt{7}$,c=2,求△ABC的面积.

分析 (1)由三角形内角和定理,正弦定理化简已知可得tanB=$\sqrt{3}$,结合范围0<B<π,即可解得B的值.
(2)由已知及余弦定理可得a2-2a-3=0,解得a,利用三角形面积公式即可得解.

解答 解:(1)∵bsin(A+B)-$\sqrt{3}$ccosB=0.
∴bsin(π-C)-$\sqrt{3}$ccosB=0.可得:bsinC-$\sqrt{3}$ccosB=0.
∴由正弦定理可得:sinBsinC=$\sqrt{3}$sinCcosB,
∵sinC≠0,可得:tanB=$\sqrt{3}$,
∵0<B<π,解得:B=$\frac{π}{3}$…6分
(2)∵由余弦定理可得:b2=a2+c2-2accosB,b=$\sqrt{7}$,c=2,B=$\frac{π}{3}$,
∴7=a2+4-2a,即a2-2a-3=0,
∵a>0,解得:a=3,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{3\sqrt{3}}{2}$…12分

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式,三角形内角和定理的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.实系数一元二次方程ax2+bx+c=0,则“ac<0”是“该方程有实数根”的充分不必要条件(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选择一个合适的填写).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)的定义域为[-1,2],值域为[0,2],则函数f(x-2)的定义域为[1,4];值域为[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,角A,B所对的边分别为a,b,若a=3bsinA,则sinB=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项的和Sn=$\frac{4}{3}$an-$\frac{1}{3}$×2n+1+$\frac{2}{3}$(n=1,2,3,…)
(Ⅰ)求首项a1
(Ⅱ)证明数列{an+2n}是等比数列并求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设等差数列{an}的前n项和为Sn,若a3=-11,a6+a10=-2,则当Sn取得最小值时,n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某小型餐馆一天装要购买A,B两种蔬菜,A,B蔬菜每千克的单价分别为2元和3元,根据需要,A蔬菜至少要买6千克,B蔬菜至少要买4千克,而且一天中购买这两种蔬菜的总费用不能超过60元,如果这两种蔬菜加工后全部卖出,A,B两种蔬菜交工后每千克分别为2元和1元,则该餐馆的最大利润最大为52元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知sin$\frac{a}{2}$=$\frac{4}{5}$,且a∈$(\frac{π}{2},π)$,求sina和cosa的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,且|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则(  )
A.$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{a}$与$\overrightarrow{b}$方向相同B.$\overrightarrow{a}$,$\overrightarrow{b}$是共线向量且方向相反
C.$\overrightarrow{a}$=$\overrightarrow{b}$D.$\overrightarrow{a}$,$\overrightarrow{b}$无论什么关系均可

查看答案和解析>>

同步练习册答案