精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=ax2+bx+1.
(1)若f(x)>0的解集是(﹣1,2),求实数a,b的值.
(2)求z=3a﹣b的取值范围。

【答案】
(1)解:由题意可知:a<0,且ax2+bx+1=0的解为﹣1,2

∴ 解得: ,


(2)解:由题意可得 ,

画出可行域,由

得{

作平行直线系z=3a﹣b可知z=3a﹣b的取值范围是(﹣2,+∞)


【解析】(1)由一元二次不等式的解集与一元二次方程的根的关系可以得出,ax2+bx+1=0的解为﹣1,2,由根系关系即可求得实数a,b的值;(2)要题意可得出一关于实数a,b的不等式组,要求3a﹣b的取值范围可用线性规划的知识来求,以所得不等式组作为约束条件,以3a﹣b作为目标函数即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过点A(01)且斜率为k的直线l与圆C(x2)2(y3)21交于MN两点.

(1)k的取值范围;

(2)12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图所示将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>l,n∈N*)个点,相应的图案中总的点数记为 ,则 =( ).
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地建一座桥,两端的桥墩已建好,这两墩相距640米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为米的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,设需要新建个桥墩,记余下工程的费用为万元.

(1)试写出关于的函数关系式;(注意:

(2)需新建多少个桥墩才能使最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=lnx+ax2+(2a+1)x

(1)讨论的单调性;

(2)当a﹤0时,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合M={x|2x+1≥0},N={x|x2﹣(a+1)x+a<0},若NM,则( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某单位的职工食堂中,食堂每天以元/个的价格从面包店购进面包,然后以元/个的价格出售.如果当天卖不完,剩下的面包以元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了个面包,以(单位:个)表示面包的需求量,(单位:元)表示利润.

(1)求关于的函数解析式;

(2)根据直方图估计利润不少于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,是假命题的是(
A.?x0∈R,sinx0+cosx0=
B.?x0∈R,tanx0=2016
C.?x>0,x>lnx
D.?x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如表:

消费次第

第1次

第2次

第3次

第4次

≥5次

收费比例

1

0.95

0.90

0.85

0.80

该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如表:

消费次第

第1次

第2次

第3次

第4次

第5次

频数

60

20

10

5

5

假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(3)设该公司从至少消费两次,求这的顾客消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出2人中恰有1人消费两次的概率.

查看答案和解析>>

同步练习册答案